Contact

Yasmin Ahmed Salem, M.A.
Yasmin Ahmed Salem, M.A.
Press and Public Relations Officer

Phone: +49 211 6792 722
Room: 222

Scientific Events

Scientific Events

Month:

New concepts in electrochemistry – from magnetic structuring of macroscopic layers to single nanoparticle analysis

10212 1496841296

New concepts in electrochemistry – from magnetic structuring of macroscopic layers to single nanoparticle analysis

Electrochemistry is a well-established technique for the electrodeposition of thin films for corrosion protection or of 3D structures for integrated circuits. It is also key to most approaches for sustainable energy conversion and storage and it is widely utilized in sensors for the detection and quantification of ions and biomolecules. In this presentation novel concepts adopting classical electrochemical methods for the fabrication and characterization of magnetic materials at the micro- and nanoscale will be presented.First the influence of magnetic fields on electrochemical deposition will be discussed using the magnetic-field assisted fabrication of structured electrodeposits in the milli- and micrometer range as an example. The relevant magnetic forces and their effect on local mass transport control will be discussed.[1,2]Electrochemistry will then be highlighted as a powerful tool for the characterization of magnetic nanoparticles beyond conventional imaging methods. For superparamagnetic Fe3O4 core Au shell nanoparticles electrochemical analysis of the particle coating quality will be shown.[3] Advancing from this, single nanoparticle electrochemistry will be presented as a new method that provides hitherto inaccessible insights into magnetic field effects on single nanoparticles in suspensions. Thus, magnetic field enhanced particle agglomeration and altered particle corrosion dynamics can be detected on a single particle level.[4]Fig. 1: Magnetic field assisted structuring of electrodeposits (left) and electrochemical characterization of magnetic core shell nanoparticles (right).References:[1] K. Tschulik, C. Cierpka, A. Gebert, L. Schultz, C.J. Kähler, M. Uhlemann, , Anal. Chem. 2011, 83, 3275–3281.[2] K. Ngamchuea, K. Tschulik, R. G. Compton, Nano Res. 2015, 8, 3293–3306.[3] K. Tschulik, K. Ngamchuea, C. Ziegler, M. G. Beier, C. Damm, A. Eychmueller, R. G. Compton, Adv. Funct. Mater. 2015, 25, 5149–5158.[4] K. Tschulik, R. G. Compton, Phys. Chem. Chem. Phys. 2014, 16, 13909–13913. [more]

 
loading content
Go to Editor View