Stein, F.; Kaspar, R.; Sauthoff, G.: Einfluss der Stahlerzeugung und des Werkstoffanlieferungszustandes auf das Verzugsverhalten. In: Beherrschung von Wärmeprozessen im Fertigungsablauf, pp. 10 - 95 (Eds. Mayr, P.; Hoffmann, F.; Walter, A.; Stiftung Institut für Werkstofftechnik). Selbstverlag, Bremen, Germany (2001)
Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings: Intermetallics 2015, International Conference. Intermetallics 2015, International Conference, Bad Staffelstein, Germany, September 28, 2015 - October 02, 2015. Congressmanagement & Marketing GmbH, Jena, Germany (2015), 116 pp.
The Department of Interface Chemistry and Surface Engineering (GO) is mainly focussing on corrosion and electrochemical energy conversion. It is internationally known to be one of the leading groups in the field of electrochemical sciences. Our mission is to combine both fundamental and applied sciences to tackle key-questions for a progress…
Plasticity, fatigue, and fracture of materials arise from localized deformation processes, which can be altered by the materials’ environment. Unravelling these mechanisms at variable temperatures and different atmospheres (like hydrogen), are essential to enhance mechanical performance and lifespan. This requires to understand the microstructure and its evolution down to the atomic level. The department is dedicated to crafting materials with superior mechanical properties by elucidating deformation mechanisms. This involves employing advanced transmission electron microscopy techniques and conducting nano-/micromechanical tests on complex, micro-architectured and/or miniaturized materials.
The department ‘Circular Metallurgy and Alloy Design’ investigates the fundamentals of the relations between synthesis, microstructure and properties of often complex nanostructured materials. The focus lies on metallic alloys such as aluminium, titanium, steels, high and medium entropy alloys, superalloys, magnesium, magnetic and thermoelectric…
The Department of Interface Chemistry and Surface Engineering (GO) is mainly focussing on corrosion and electrochemical energy conversion. It is internationally known to be one of the leading groups in the field of electrochemical sciences. Our mission is to combine both fundamental and applied sciences to tackle key-questions for a progress…