Scientific Events

Location: Max-Planck-Institut für Eisenforschung GmbH

GDRI CNRS Mecano General Meeting on the Mechanics of Nano-objects

GDRI CNRS Mecano General Meeting on the Mechanics of Nano-objects
The next MECANO General Meeting will take place on July 18th and 19th, 2013 at the Max-Planck- Institut für Eisenforschung in Duesseldorf. This internationally funded CNRS research network is focused on the subject of “Mechanics of Nano-objects”. The MECANO network is multidisciplinary and one which brings together physicists, mechanical engineers and chemists. [more]

Interface Design in Solar Cells

Interface Design in Solar Cells
The Max-Planck-Institut für Eisenforschung in Düsseldorf is organizing a workshop on interface design in solar cells on July, 2nd 2013. A broad variety of topics concerning the interfaces in solar cells will be presented: covering topics from CIGS/CZTS thin-film solar cells and Si multicrystalline solar cells to novel theoretical and experimental design approaches. The programme includes scientific talks, discussions and a lab session. Speakers include: Susane Siebentritt (Univ. Luxembourg) Roland Würz (ZSW) Daniel Abou-Ras (HZB) Otwin Breitenstein (MPI Halle) Karsten Albe (TU Darmstadt) Christian-Herbert Fischer (HZB) Joachim Mayer (RWTH Aachen) Winfried Seifert (IHP/BTU) [more]

Unconventional Tools for Constructing Tunneling Junctions from Self-Assembled Monolayers

Unconventional Tools for Constructing Tunneling Junctions from Self-Assembled Monolayers
Despite remarkable advancements in the theory and spectroscopy, and the myriad tools for measuring tunneling currents through molecules, a central problem in the field of Molecular Electronics is the lack of robust, generalizable, scalable methods for leveraging self-assembly to construct devices. In this talk I will discuss two methods for using self-assembled monolayers (SAMs) to define the smallest dimension of tunneling-based devices; eutectic Ga-In (EGaIn) and Nanoskiving. EGaIn is a non-Newtonian liquid alloy with the remarkable ability to retain tapered structures simply by stretching it between to surfaces. These tapered structures can then be used to form reversible, non-damaging micron-sized contacts to SAMs of a variety of different types of molecules. Such a tip is pictured in the top figure, along with a cartoon of a tunneling junction and the J/V curves of three SAMs for which the conjugation pattern is shown to affect the tunneling probability via quantum interference. Pictured below are three different nano-gap electrodes fabricated by Nanoskiving, an emerging nanofabrication technique based on edge lithography. These electrodes are formed by separating two thin films of gold by a SAM and then slicing them using a diamond knife (Nanoskiving) to produce addressable structures that are millimeters long and separated by ~2 nm. They are electrically continuous and the separation of the electrodes can be controlled with sub-nanometer resolution without a clean room or any photo or e-beam lithography. [more]
Go to Editor View