Scientific Events

Host: Prof. Gerhard Dehm

Synthesis and characterization of tungsten-based composites for high-temperature applications

Synthesis and characterization of tungsten-based composites for high-temperature applications

Spatially Resolved Texture and Microstructure Evolution of Additively Manufactured and Gas Gun Deformed 304L Stainless Steel; Investigated by Neutron Diffraction and Electron Backscatter Diffraction

Spatially Resolved Texture and Microstructure Evolution of Additively Manufactured and Gas Gun Deformed 304L Stainless Steel; Investigated by Neutron Diffraction and Electron Backscatter Diffraction

Size Effects in Metals: On the Role of Internal Boundaries across the Scales

MPIE Colloquium
Size effects are a key ingredient to control and improve the mechanical behaviour of metallic microstructures and miniaturized components. The analysis of size effects in metals has received continuous attention in the past two decades, both experimentally and numerically. This lecture focuses on the role of grain and phase boundaries in restricting dislocation motion, giving rise to size effects. Some essential features of a thermodynamically consistent model for a grain boundary are presented, which accounts for the grain boundary energy and defect structure and evolution. The role of a phase boundary is investigated with a dislocation transport driven crystal plasticity model, revealing the explicit role of the plastic phase contrast and phase boundary resistance. Interesting size effects are thereby recovered. Size effects can also be eliminated or inhibited by other microstructural mechanisms. Two cases are addressed to illustrate this. The first case reveals the role of dislocation climb and its effectiveness in dissolving dislocation pile-ups. The second case concerns a very thin austenitic film in martensite, whereby the particular structure of the phase and its interface give rise to preferential sliding mechanisms that circumvent the common dislocation driven size effects.This lecture addresses the strengthening role of internal boundaries, constituting a major con- tribution to size effects in metals. It is shown that besides dislocation pile-ups, other mechanisms may be essential. For grain boundaries, the defect absorption and redistribution matters. For phase boundaries, phase contrast in dislocation transport alone already contributes to size effects. Moreover, dislocation-pile ups can be dissolved through climb at higher temperatures or circum- vented by other particular micromechanisms. This analysis effectively illustrates that predicting size effects in metals quantitatively remains a major challenge. References [1] van Beers P.R.M., Kouznetsova V.G., Geers M.G.D.: Defect redistribution within a continuum grain boundary plasticity model. J. Mech. Phys. Solids 83:243-262, 2015.[2] Dogge M.M.W., Peerlings R.H.J., Geers M.G.D.: Interface modeling in continuum dislocation transport. Me- chanics of Materials. 88:30-43, 2015.[3] Geers M.G.D., Cottura M., Appolaire B., Busso E.P., Forest S.,Villani A.: Coupled glide-climb diffusion- enhanced crystal plasticity. J. Mech. Phys. Solids. 70:136-153, 2014.[4] Maresca F., Kouznetsova V.G., Geers M.G.D.: Subgrain lath martensite mechanics: a numerical-experimental analysis. J. Mech. Phys. Solids. 73:69-83, 2014.[5] Maresca F., Kouznetsova V.G., Geers M.G.D.: Deformation behaviour of lath martensite in multi-phase steels. Scripta Materialia 110:74-77, 2016.[6] Maresca F., Kouznetsova V.G., Geers M.G.D.: Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures. Mod. Sim. Mat. Sc. Engng. 24(2):025006, 2016.[7] Du C., Hoefnagels J.P.M, Vaes R., Geers M.G.D.: Block and sub-block boundary strengthening in lath marten- site, Scripta Materialia,116:117-121, 2016.[8] Du C., Hoefnagels J.P.M, Vaes R., Geers M.G.D.: Plasticity of lath martensite by sliding of substructure boundaries, Scripta Materialia 120:37-40, 2016. [more]

Phase Transformations under Rapid Heating in Metallic Micro- and Nanolaminates

Phase Transformations under Rapid Heating in Metallic Micro- and Nanolaminates

Publishing in Material Science - and how to Maximize your success

Publishing your research results is an integral – if not the most important – part of your research. In this talk, some insight in the publishing process at the inhouse editorial offices of the successful journal family of Advanced Materials will be given. I will clarify the workflow at a publishing house from the moment the manuscript arrives until it is published and emphasize the role of the editor in that process. In the second part, I concentrate specifically on the requirements for successful publication in our high-impact journals and explain our requirements for acceptable manuscripts in our journals – and which pit falls authors should avoid in the preparation and submission process. [more]

MPIE-Colloquium: Complex nanostructures and nanocomposites for plasmonic and photonic applications

MPIE-Colloquium: Complex nanostructures and nanocomposites for plasmonic and photonic applications
Nanoparticles, nanowires, and many other nanostructures are produced and investigated for applications for quite some time. The desired functionality is not easy to achieve in a reproducible way. Various methods will be presented how such structures can be produced in a well defined arrangement and well defined functionality. Nanoporous gold nanosponges will be presented and it will be shown how disorder can be used to obtain a robust and reproducible functionality, i.e. disorder can be used for precision.In addition, nanoporous nanostructures can be easily tuned for applications by advancing them to nanocomposites with desired functionality, which can be used in medicine, energy storage and conversion, photocatalysis and further applications. [more]
Go to Editor View