Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential. CALPHAD L Conference, Cambridge, MA, USA (2023)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
Zhu, L.-F.; Janßen, J.; Grabowski, B.; Neugebauer, J.: Melting parameters from ab initio using the fast statistical sampling TOR-TILD approach: Applications to Al and Ni. CALPHAD XLVIII CONFERENCE, Singapore, Singapore (2019)
Neugebauer, J.; Todorova, M.; Grabowski, B.; Hickel, T.: Modelling structural materials in realistic environments by ab initio thermodynamics. Hume-Rothery Award Symposium, TMS2019 Annual Meeting and Exhibition, San Antonio, TX, USA (2019)
Neugebauer, J.; Janßen, J.; Körmann, F.; Hickel, T.; Grabowski, B.: Exploration of large ab initio data spaces to design materials with superior mechanical properties. Physics and Theoretical Division Colloquium, Los Alamos, NM, USA (2019)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. CALPHAD XLVII Conference, Querétaro, México (2018)
Grabowski, B.: Knowledge driven engineering of materials: Development and application of ab initio based scale bridging methods. Seminar at HSU Hamburg, Hamburg, Germany (2018)
Grabowski, B.: Efficient and Accurate Computation of Melting Temperatures and Enthalpies and Entropies of Fusion from Ab Initio. TMS conference, Phoenix, AZ, USA (2018)
Grabowski, B.: Knowledge driven engineering of materials: Development and application of ab initio based scale bridging methods. Seminar at University Stuttgart, Stuttgart, Germany (2017)
Wissenschaftler des Max-Planck-Instituts für Eisenforschung entwickeln ein neues maschinelles Lernmodell für korrosionsresistente Legierungen. Und veröffentlichen ihre Ergebnisse in der Fachzeitschrift Science Advances
Düsseldorfer Max-Planck-Wissenschaftler diskutieren den Einsatz künstlicher Intelligenz in der Materialwissenschaft und veröffentlichen Review-Artikel in der Fachzeitschrift Nature Computational Science