Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, S. 339 - 361 (2004)
Roters, F.: Simulation der Umfornmung von metallischen Werkstoffen nach der Texturkomponenten-Kristallplastitizitäts-FEM. Simulation, S. 50 - 53 (2003)
Roters, F.: A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening. Physica Status Solidi (b), S. 68 - 74 (2003)
Raabe, D.; Zhao, Z.; Park, S. J.; Roters, F.: Theory of orientation gradients in plastically strained crystals. Acta Materialia 50 (2), S. 421 - 440 (2002)
Karhausen, K. F.; Roters, F.: Development and application of constitutive equations for the multiple-stand hot rolling of Al-alloys. Journal of Materials Processing Technology 123, S. 155 - 166 (2002)
Raabe, D.; Roters, F.; Zhao, Z.: Texture component crystal plasticity finite element method for physically-based metal forming simulations including texture update. Proc. 8th Int. Conf. on Aluminium Alloys, S. 31 - 36 (2002)
Roters, F.; Zhao, Z.: Application of the texture component crystal plasticity finite element method for deep drawing simulations - A comparison with Hill’s yield criterion. Advanced Engineering Materials 4, S. 221 - 223 (2002)
Roters, F.; Raabe, D.; Gottstein, G.: Work hardening in heterogeneous alloys - A microstructural approach based on three internal state variables. Acta Materialia 48 (17), S. 4181 - 4189 (2000)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 S.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, S. 1347 - 1372 (Hg. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2-freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen.
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Neues Video von Dr. Rasa Changizi erklärt wie sich Wasserstoff in Metallen verhält und an welchen Methoden das MPIE forscht, um Risiken durch Wasserstoffversprödung zu umgehen.
Neues Video erklärt wie Ammoniak die Speicherung und den Transport von Wasserstoff erleichtert und zur Produktion von grünem Stahl verwendet werden kann