

Pressemeldung

26. November 2025

Klimafreundliche Metalle aus Tiefsee-Erzen

Falls sich Manganknollen umweltverträglich abbauen lassen, können für die Energiewende benötigte Metalle nun CO₂-arm produziert werden

Auf den Punkt gebracht:

- Der weltweite Bedarf an Kupfer, Nickel und Kobalt wird sich bis 2050 mehr als verdoppeln. Die Produktion der Metalle aus Tiefsee-Manganknollen wäre unter anderem ohne Entwaldung möglich und würde deutlich weniger Abfall erzeugen.
- Das Düsseldorfer Max-Planck-Team gewinnt aus den Tiefsee-Erzen durch bloßes Aufschmelzen in einem Lichtbogenofen elementares Kupfer. Durch die Reduktion mit Wasserstoffplasma entsteht dann eine Legierung, die unter anderem Nickel und Kobalt enthält.
- Bei dem Prozess wird 90 Prozent weniger CO₂ emittiert und fast ein Fünftel weniger Energie benötigt als in dem konventionellen Verfahren, das auf der Reduktion mit Kohle basiert.

Der Bedarf an Metallen wird in den kommenden Jahren deutlich steigen, vor allem weil der klimafreundliche Umbau der Wirtschaft nur durch die Elektrifizierung von Industrieprozessen, Verkehr und Wärmegewinnung möglich ist. So werden etwa für Elektromotoren und den Ausbau des Stromnetzes bis 2050 etwa 60 Millionen Tonnen Kupfer benötigt, und je nach der künftigen Entwicklung der Batterietechnik auch 10 Millionen Tonnen Nickel und 1,4 Millionen Tonnen Kobalt. Der Bedarf für Kupfer und Nickel würde sich bis zur Mitte des Jahrhunderts somit mehr als verdoppeln, für Kobalt sogar etwa verfünffachen. Der Abbau von Metallen belastet dabei stets die Umwelt. So werden für Nickel- und Kobaltminen immer wieder große Waldflächen gerodet. Und gerade der Abbau von Kobalt findet meist unter sehr fragwürdigen sozialen Bedingungen statt: Oft werden dafür dem UN-Kinderhilfswerk zufolge, sogar Kinder in die Minen geschickt. Die Erze, die an Land zu finden sind, enthalten zudem nur noch einen sehr geringen Anteil der gesuchten Metalle. So fallen für jede Tonne Kupfer, die aus Lagerstätten an Land gewonnen wird, 200 Tonnen Abfall an, und insgesamt erzeugt die Produktion von Kupfer, Nickel und Kobalt jährlich insgesamt vier bis fünf Milliarden Tonnen an unbrauchbarem Gestein und Schlacke.

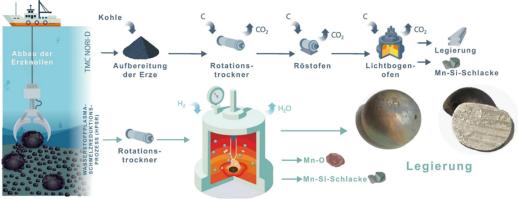
Eine Alternative zu Minen an Land bietet der Abbau von Tiefsee-Erzknollen, die oft auch Manganknollen genannt werden und neben großen Mengen Mangan einen erklecklichen Anteil an Kupfer, Nickel und Kobalt enthalten. Sie sind in großen Mengen in der Clarion-Clipperton-Zone im Pazifik zu finden. Ein Team des Max-Planck-Instituts für Nachhaltige Materialien (MPI-SusMat) stellt im Fachmagazin Science Advances nun einen effizienten und CO₂-armen Prozess vor, in dem sich aus den Tiefsee-Erzen durch Schmelzen und der Reduktion mit Wasserstoff Kupfer, Nickel und Kobalt gewinnen lassen. Die Methode ist deutlich nachhaltiger als das Verfahren, bei dem das kanadische Unternehmen TMC in seinem Nori-D-Projekt Tiefsee-Erze mit Kohle reduziert. Denn bei der Wasserstoffreduktion entstehen nicht nur 90 Prozent weniger CO₂, wenn sie mit grünem Wasserstoff und Strom vorgenommen wird. Der Ansatz des Max-Planck-Teams erfordert auch knapp 20 Prozent weniger Energie und weniger Prozessschritte.

Keine Entwaldung und deutlich weniger Abfall beim Tiefsee-Bergbau

"Auch der Abbau dieser Metallknollen in der Tiefsee hinterlässt ökologische Spuren", sagt Dierk Raabe, Direktor am MPI-SusMat. "Deshalb war ich noch vor wenigen Jahren dagegen, diese Ressourcen auszubeuten, um nicht dieselben Fehler zu haben." wiederholen. die wir Land gemacht Inzwischen an Materialwissenschaftler jedoch offen für den Tiefseebergbau, zumindest wenn er möglichst umweltverträglich stattfindet. Geändert hat er seine Meinung unter anderem, weil es bei der Gewinnung von Metallen aus Tiefsee-Erzen keine Kinderarbeit gäbe, nicht zu massiven Rodungen käme und deutlich weniger Abfall entstünde. So fielen bei der Produktion der Metalle für eine Milliarde E-Auto-Batterien neun Milliarden Tonnen Gesteinsmüll an, wenn die Materialien aus Tiefsee-Erzen geholt würden, während bei ihrer Gewinnung aus Lagerstätten an Land 63 Milliarden unbrauchbares Gestein deponiert werden müssen. Das haben Forschende der University Delaware berechnet.

Der ökologische Fußabdruck der Metallproduktion aus Tiefsee-Erzen würde durch den Prozess der Max-Planck-Forschenden zudem kleiner. "Wir reduzieren die getrockneten Erze mit einem Wasserstoffplasma direkt in einem elektrisch betriebenen Lichtbogenofen", erklärt Ubaid Manzoor, der die Experimente im Rahmen seiner Promotion vornahm. Fast das gesamte Kupfer können die Forschenden dabei bereits als reines Metall gewinnen, indem sie das Erz schmelzen und die Schmelze anschließend wieder etwas abkühlen. Sobald sie dann Wasserstoff in den Ofen strömen lassen, entsteht neben verschiedenen Manganoxiden, die teilweise für Batterien verwenden werden können, eine Legierung unter anderem aus Kupfer, Nickel und Kobalt. Dabei variieren die Anteile in der Legierung je nach Dauer der Reduktion. "Weil wir Kupfer vorher abtrennen können, wird es einfacher, die verbleibende Legierung weiterzuverarbeiten", sagt Ubaid Manzoor. In einer früheren Arbeit hatten die Forschenden um Ubaid Manzoor bereits einen ganz ähnlichen Prozess vorgestellt, mit dem sich Nickel klimafreundlich aus an Land abgebauten Erzen gewinnen lässt.

Ein Beitrag zur umfassenden Ökobilanz des Tiefsee-Bergbaus


Inwieweit der Abbau der Tiefsee-Erze einmal den Bergbau an Land ersetzen wird, ist noch Gegenstand internationaler Verhandlungen. "Wir wollen mit unserer Arbeit aber Informationen bereitstellen, auf deren Basis die ökologischen Folgen der Metallproduktion aus verschiedenen Lagerstätten umfassend bewertet werden können", sagt Ubaid Manzoor. Und für Dierk Raabe ist klar: "Wenn wir weg von einer CO₂-intensiven Wirtschaft wollen, müssen wir in einen sauren Apfel beißen."

Stoff für die Energiewende: Bei der Reduktion von Tiefsee-Erzen mit Wasserstoffplasma entsteht eine Legierung, die unter anderem Nickel und Kobalt enthält. Die beiden Metalle werden für Nickel-Mangan-Kobalt-Batterien, einem weit verbreiteten leistungsfähigen Typ von

Lithiumbatterien, benötigt. Copyright: U. Manzoor, Max-Planck-Institut für Nachhaltige Materialien GmbH

Wasserstoffplasma im Lichtbogenofen

Verkleinerter ökologischer Fußabdruck: Erze, die in der Tiefsee abgebaut werden (links), lassen sich nach dem Trocknen mit einem Wasserstoffplasma in einem Lichtbogenofen reduzieren. Dabei entsteht neben Manganoxiden und einer mangan- und siliziumhaltigen Schlacke eine Legierung, die Nickel und Kobalt enthält. Bei dem Prozess, der am Max-Planck-Institut für Nachhaltige Materialien entwickelt wurde, entsteht deutlich weniger CO₂ als in dem konventionellen, kohlebasierten Verfahren, bei dem die Erze vor der eigentlichen Kohle-Reduktion ebenfalls mit Kohle getrocknet und geröstet werden müssen. Copyright: U. Manzoor, Max-Planck-Institut für Nachhaltige Materialien GmbH

Ubaid Manzoor beim Einstellen des Wasserstoffpartialdrucks im Lichtbogenofen, um Kupfer, Nickel und Kobalt aus Tiefsee-Erzen zu gewinnen. Copyright: Max-Planck-Institut für Nachhaltige Materialien GmbH

Am Max-Planck-Institut für Nachhaltige Materialien (MPI-SusMat) entwickeln wir neue Wege, Materialien für eine klimaneutrale Zukunft zu gestalten, herzustellen und zu recyceln. Von grünem Stahl und recycelbarem Aluminium bis hin zu langlebigen Batterien – unsere Forschung adressiert zentrale Herausforderungen in den Bereichen Energie, Mobilität, Infrastruktur und Ressourceneffizienz. Durch die Kombination von Materialwissenschaft und Künstlicher Intelligenz treiben wir nachhaltige Innovationen voran. Bis 2024 war das Institut unter dem Namen Max-Planck-Institut für Eisenforschung GmbH tätig.

Mehr Neuigkeiten aus dem MPI-SusMat gibt es bei LinkedIn, YouTube und X.

Kontakt:

Yasmin Ahmed Salem, M.A. Referentin für Presse- und Öffentlichkeitsarbeit

E-Mail: <u>y.ahmedsalem@mpie.de</u> Tel.: +49 (0) 211 6792 722 <u>https://www.mpi-susmat.de</u>

