Morsdorf, L.; Ponge, D.; Raabe, D.; Tasan, C. C.: New multi-probe experimental approaches to study complex lath martensite. Seminar at Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan (2016)
Raabe, D.; Choi, P.-P.; Gault, B.; Ponge, D.; Yao, M.; Herbig, M.: Segregation engineering for self-organized nanostructuring of materials - from atoms to properties? APT&M 2016 - Atom Probe Tomography & Microscopy 2016 (55th IFES) , Gyeongju, South Korea (2016)
Kuzmina, M.; Gault, B.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms. Res Metallica Symposium, Department of Materials Engineering, KU Leuven, Leuven, The Netherlands (2016)
Ponge, D.; Herbig, M.; Tasan, C. C.; Raabe, D.: Integrated experimental and simulation analysis of dual phase steels. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2016, Bernkastel, Germany (2016)
Raabe, D.: Materials Engineering through the Ages: from the Battle of Kadesh to Atomic Scale Materials Design. Elite Network of Bavaria (ENB) Forum in Erlangen: Focus on Materials Engineering, Erlangen, Germany (2016)
An, D.; Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Correlation between the 5-parametric GBCD and the corrosion resistance of a 304 stainless steel by 3D-EBSD. RMS-EBSD Meeting 2016, Manchester, UK (2016)
Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2-freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen.
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Düsseldorfer Max-Planck-Wissenschaftler diskutieren den Einsatz künstlicher Intelligenz in der Materialwissenschaft und veröffentlichen Review-Artikel in der Fachzeitschrift Nature Computational Science
Neues Video erklärt wie Ammoniak die Speicherung und den Transport von Wasserstoff erleichtert und zur Produktion von grünem Stahl verwendet werden kann