Vega-Paredes, M.; Scheu, C.; Aymerich Armengol, R.: Expanding the Potential of Identical Location Scanning Transmission Electron Microscopy for Gas Evolving Reactions: Stability of Rhenium Molybdenum Disulfide Nanocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials and Interfaces 15 (40), S. 46895 - 46901 (2023)
Liang, Y.; Mrovec, M.; Lysogorskiy, Y.; Vega-Paredes, M.; Scheu, C.; Drautz, R.: Atomic cluster expansion for Pt–Rh catalysts: From ab initio to the simulation of nanoclusters in few steps. Journal of Materials Research 38, S. 5125 - 5135 (2023)
Berova, V.; Garzón-Manjón, A.; Vega-Paredes, M.; Scheu, C.; Jurzinsky, T.: Influence of Shell Thickness on Durability of Ru@Pt Core-Shell Catalysts for Reformate PEM Fuel Cells. In ECS Meeting Abstracts, MA2022-01 (35), S. 1528. The Electrochemical Society (2022)
Vega-Paredes, M.; Aymerich Armengol, R.; Scheu, C.: Determining the degradation mechanisms and active species of electrocatalysts by identical location electron microscopy. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Jeju, South Korea (2023)
Vega-Paredes, M.; Arenas Esteban, D.; Garzón-Manjón, A.; Scheu, C.: How can electron tomography be used for studying the catalyst degradation of fuel cells. Advanced Electron Nanoscopy Group – Institut Catala de Nanociencia I Nanotecnologia, Bellaterra, Spain (2022)
Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (angenommen)
Vega-Paredes, M.: Degradation mechanisms during operation of high temperature polymer electrolyte membrane fuel cells. Bachelor, Universitat Autònoma de Barcelona, Spain (2020)
Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2-freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen.
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Neues Video erklärt wie Ammoniak die Speicherung und den Transport von Wasserstoff erleichtert und zur Produktion von grünem Stahl verwendet werden kann