Bastos, A.; Zaefferer, S.; Raabe, D.: 3D Orientation microscopy. Deutsche Gesellschaft für Materialkunde e.V. Fachausschuss Texturen, RWTH Aachen, Germany (2007)
Raabe, D.: Crystal Mechanics of Metals and Biological Matter. Colloquium lecture at Max Planck Institute for Colloids and Interfaces, Golm/Potsdam (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2007)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany (2006)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. GKSS Research Center, Geesthacht, Germany (2006)
Raabe, D.; Zaafarani, N.; Roters, F.: 3D Study on Texture and Size Effects Below Nanoindents in Cu Single Crystals Using 3D FIB-EBSD and Crystal Plasticity Finite Element Simulations. MRS Fall Conference, Boston, MA, USA (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3D EBSD Characterization of a Nanocrystalline NiCo Alloy by use of a High-resolution Field Emission SEM-EBSD Coupled with Serial Sectioning in a Focused Ion Beam Microscope (FIB). MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Al-Sawalmih, A.; Raue, L.; Klein, H.; Fabritius, H.: Texture of Alpha-chitin and Calcite as a Microscopic Composite Design and Macroscopic Biological Construction Principle of the Exoskeleton of the Lobster Homarus americanus. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. 2006 MRS Fall Conference, Boston, MA, USA (2006)
Ohsaki, S.; Raabe, D.; Hono, K.: On the Mechanism of Mechanical Mixing and Deformation-induced Amorphization in Heavily Drawn Cu-Nb-Ag in situ Composite Wires. MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Sander, B.; Friák, M.; Neugebauer, J.: Bottom up design of novel Titanium-based biomaterials through the combination of ab-initio simulations and experimental methods. Materials Research Society fall meeting, Boston, MA, USA (2006)
Sandim, M.; Stamopoulos, D.; Sandim, H.; Ghivelder, L.; Thilly, L.; Vidal, V.; Lecouturier, F.; Raabe, D.: Strain Effects on the Magnetic Properties of Cu-Nb Nanofilamentary Composites. MRS Fall Conference, Boston, MA, USA (2006)
Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2-freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen.
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Neues Video von Dr. Rasa Changizi erklärt wie sich Wasserstoff in Metallen verhält und an welchen Methoden das MPIE forscht, um Risiken durch Wasserstoffversprödung zu umgehen.
Neues Video erklärt wie Ammoniak die Speicherung und den Transport von Wasserstoff erleichtert und zur Produktion von grünem Stahl verwendet werden kann
Wasserstoff kann in Werkstoffen wie Aluminium zu Versprödung und Materialversagen führen. Wissenschaftler*innen am Max-Planck-Institut für Eisenforschung haben die Wasserstoffatome in der Mikrostruktur des Aluminiums lokalisiert und Strategien entwickelt, um den Wasserstoff in der Mikrostruktur des Materials einzufangen. So lässt sich der Schaden…