Ma, Y.: Microstructure evolution during hydrogen-based direct reduction of iron oxides. International Workshop on Sustainable Metallurgy of Green Steel (GreenSteel2022), online (2022)
Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Ma, Y.; Zaefferer, S.; Raabe, D.: Hydrogen-based direct reduction of iron ores: Microstructure, crystallography, and reduction mechanisms. 2021 International Metallurgical Processes Workshop for Young Scholars (IMPROWYS2021), a hybrid event, Online (2021)
Ma, Y.: Materials Characterization – Introduction to X-ray Diffraction. Vorlesung: International Max Planck Research School for Interface Controlled Materials for Energy Conversion (IMPRSURMAT), online, 2021-08
Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2-freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen.
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Neues Video von Dr. Rasa Changizi erklärt wie sich Wasserstoff in Metallen verhält und an welchen Methoden das MPIE forscht, um Risiken durch Wasserstoffversprödung zu umgehen.
Neues Video erklärt wie Ammoniak die Speicherung und den Transport von Wasserstoff erleichtert und zur Produktion von grünem Stahl verwendet werden kann