Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Predicting atomic structure and chemical reactions at solid-liquid interfaces by first principles. Operando surface science – Atomistic insights into electrified solid/liquid interfaces (708. WE-Heraeus-Seminar), Physikzentrum, Bad Honnef, Germany (2019)
Neugebauer, J.: Machine Learning in Materials: Screening and Discovery. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan (2019)
Ikeda, Y.; Ishibashi, S.; Neugebauer, J.; Körmann, F.: Tuning stacking-fault energies and local lattice distortions in high-entropy alloys. Theory of Complex Disorder in Materials (TCDM2019) , Linköping, Sweden (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: First-principles appraoch to model electrochemical reactions at solid-liquid interfaces. ACS 2019 Fall Meeting & Exhibition, San Diego, CA, USA (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: Degradation processes at surfaces and interfaces. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (2019)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
Neugebauer, J.: Machine Learning in Materials: Screening and Discovery. Gordon Research Conference Physical Metallurgy „Coupling Computation, Data Science and Experiments in Physical Metallurgy“, Manchester, NH, USA (2019)
Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der Zeitschrift Nature veröffentlicht.
Wissenschaftler des Max-Planck-Instituts für Eisenforschung entwickeln ein neues maschinelles Lernmodell für korrosionsresistente Legierungen. Und veröffentlichen ihre Ergebnisse in der Fachzeitschrift Science Advances
Düsseldorfer Max-Planck-Wissenschaftler diskutieren den Einsatz künstlicher Intelligenz in der Materialwissenschaft und veröffentlichen Review-Artikel in der Fachzeitschrift Nature Computational Science