Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: A computationally highly efficient ab initio approach for melting property calculations and practical applications. CALPHAD 2024, Mannheim, Germany (2024)
Zhu, L.-F.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential and pyiron workflow. New Horizons in materials design at MPIE, Düsseldorf, Germany (2023)
Wissenschaftler des Max-Planck-Instituts für Eisenforschung entwickeln ein neues maschinelles Lernmodell für korrosionsresistente Legierungen. Und veröffentlichen ihre Ergebnisse in der Fachzeitschrift Science Advances
Düsseldorfer Max-Planck-Wissenschaftler diskutieren den Einsatz künstlicher Intelligenz in der Materialwissenschaft und veröffentlichen Review-Artikel in der Fachzeitschrift Nature Computational Science