Ein großer Sprung in eine neue Zeit: Millionenförderung für realistische Werkstoffsimulation
Europäischer Forschungsrat fördert Max-Planck-Projekt mit 1,5 Millionen Euro
Der Europäische Forschungsrat fördert Dr. Blazej Grabowski, Wissenschaftler am Max-Planck-Institut für Eisenforschung (MPIE), mit 1,5 Millionen Euro für einen Zeitraum von fünf Jahren für sein Projekt „TIME-BRIDGE“ (übersetzt: Zeitbrücke). Grabowski leitet zusammen mit seinem MPIE-Kollegen Dr. Cem Tasan die Gruppe „Adaptive Strukturwerkstoffe“. Bei dem jetzt bewilligten Forschungsprojekt geht es um die Entwicklung neuartiger Simulationsmethoden, die es in Zukunft erlauben, Materialeigenschaften, wie zum Beispiel die Festigkeit, kontrolliert zu optimieren. Grabowski plant mit einer neuen theoretischen Herangehensweise Fortschritte auf diesem Gebiet zu erzielen, indem er ein grundsätzliches Verständnis der zeitlichen Abläufe auf der Nano- bis hin zur Makroskala innerhalb des Materials schafft. Unterstützt wird er hierbei von einem experimentellen Expertenteam um Dr. Christoph Kirchlechner, Leiter der Gruppe „Nano-/Mikromechanik von Materialien“ am MPIE.
Die Eigenschaften von Materialien hängen von ihrer atomaren Struktur und deren Dynamik ab. Dabei weisen die meisten Werkstoffe Defekte auf, die beides kritisch beeinflussen. So ging man lange Zeit davon aus, dass die theoretische Festigkeit eines Materials nicht erreicht werden kann, da diese erst bei perfekten Strukturen, existiert. Experimente haben aber gezeigt, dass diese Annahme falsch ist - auf der Nanometerebene kann man zuvor unerreichte Festigkeiten, welche bis an die theoretische Grenze herangehen, nachweisen. Diese aus wissenschaftlicher Sicht höchst spannenden Ergebnisse sind allerdings noch nicht ausreichend verstanden, um sie industriell umsetzbar zu machen. Weitere Fortschritte sind nur durch den Einsatz von komplementären Simulationsmethoden möglich, die ihrerseits aber bisher unter dem sogenannten Zeitskalendilemma litten.
Mit speziellen Methoden simulieren die Materialwissenschaftler mehrere Millionen Atome, um die Wechselwirkungen der Defekte und somit die Einflussfaktoren auf bestimmte Eigenschaften eines Materials wie die Festigkeit, zu verstehen. Hierbei stoßen sie auf das Zeitskalendilemma: die Atome in einem Material sitzen nicht auf festen Positionen, sondern vibrieren mit extremen Geschwindigkeiten um ihre Plätze. Mit gegenwärtigen Computersimulationen können die Wissenschaftler daher nur wenige Nanosekunden dieser Dynamik beschreiben. Das ist problematisch, weil die Dynamik der Defekte, wie sie experimentell gemessen wird und wie sie für die Festigkeit des Materials verantwortlich ist, sich im Bereich von Sekunden abspielt. Dieses Intervall zwischen Nanosekunden und Sekunden konnte bisher nicht zufriedenstellend überbrückt werden.
Grabowskis Projekt „TIME-BRIDGE“ will genau dieses fehlende und wichtige Zeitintervall mit einer neuen Methode in der Simulation von Atomen beschreiben: der Pseudopotential-Methode. Diese Methode wird normalerweise zur Bestimmung der Dynamik von Elektronen, das heißt deren Bewegung, benutzt. Hintergrund ist, dass Elektronen, also negativ geladene Elementarteilchen, die Nähe des Atomkerns bevorzugen, um welchen sie kreisen. Gleichzeitig stoßen sich die Elektronen gegenseitig ab, sodass sie den größtmöglichen Abstand voneinander haben. Hierbei bewegen sich die Elektronen nicht überall gleich schnell: in der Nähe des atomaren Kerns bewegen sie sich schneller als in dem Bereich zwischen den Atomkernen. Computersimulationen sind dabei durch die schnellste Bewegung im System limitiert. Bei der Elektronendynamik wird dieses Problem durch ein sogenanntes Pseudopotential gelöst, welches die Attraktivität des Kerns und gleichzeitig das gegenseitige Abstoßen der Elektronen voneinander erfolgreich imitiert. Grabowski will nun dieses Konzept bei der Simulation von Atomen anwenden, um das Intervall zwischen den theoretisch beschreibbaren Nanosekunden und den experimentell relevanten Sekunden zu überbrücken und damit die Grundlage für die Entwicklung neuartiger Materialien zu schaffen.
Im Fokus werden zunächst sogenannte Nanopillar-Untersuchungen stehen. Hierbei erzeugen die Wissenschaftler kleine atomare „Türme“, die später zusammengestaucht werden. Diese idealisierten Studien erlauben es die Wechselwirkung der Defekte untereinander mit hoher Präzision und systematisch zu bestimmen. Die theoretischen Untersuchungen von Grabowski werden von hochgenauen Experimenten mit modernsten Elektronenmikroskopen unter der Leitung von Kirchlechner begleitet. Die enge Zusammenarbeit der Theoretiker und Experimentatoren ist ein wesentliches Merkmal von TIME-BRIDGE, dass die Erfolgschancen des Projektes immens steigert.
Die Förderung des Europäischen Forschungsrates gibt jungen Wissenschaftler die Möglichkeit ihre eigene Forschungsgruppe aufzubauen, um somit Talente frühzeitig zu fördern. Als angehende Führungskräfte sollen die geförderten Wissenschaftler europaweit unabhängige Forschung betreiben.
Autor: Yasmin Ahmed Salem