Scientific Events

Location: Max-Planck-Institut für Eisenforschung GmbH

Aberration-corrected STEM and ultra-high energy resolution EELS

Aberration-corrected STEM and ultra-high energy resolution EELS
Electron microscopy has advanced very significantly in the last two decades. Electron-optical correction of aberrations, which we introduced for the scanning transmission electron microscope (STEM) in 1997, has allowed STEMs to reach sub-Å resolution from 2002 on. It has led to new STEM capabilities, such as atomic-resolution elemental mapping, and determining the type of single atoms by electron energy loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDXS). More recently, we have focused on Ultra-High Energy Resolution EELS (UHERE). We have developed a monochromator and a spectrometer that use multipolar optics similar to the optics of aberration correctors, plus several stabilization methods, and we have reached <5 meV energy resolution at 30 keV primary energy. This has opened up a new field: vibrational spectroscopy in the electron microscope. When collecting large-angle scattering events, vibrational spectroscopy can lead to sub-nm spatial resolution, and when collecting small-angle scattering angle events, it can produce EEL spectra with the electron beam positioned tens of nm away from the probed area. The second geometry has led to a powerful new technique: aloof vibrational analysis of materials, which avoids significant radiation damage. Even more recently, we have focused on combining the analytical techniques with in-situ sample treatment. Our progress includes cooling the sample to liquid N2 temperature in a side-entry holder capable of reaching better than 1 Å resolution. My talk will review these developments, and illustrate them by application examples. [more]

Making quantum transport visible in thermoelectric Bi2Te3 nanoparticles

Bi2Te3, Sb2Te3, and Bi2Se3, well established thermoelectric materials, are also three-dimensional (3D) topological insulators (TI) exhibiting a bulk bandgap and highly conductive, robust, gapless surface states. While the transport properties of 3D TIs are of utmost importance for potential applications, they are difficult to characterize. The reason is that transport in those materials is always dominated by bulk carriers. Still, the signature of the nontrivial electronic band structure on the thermoelectric transport properties can be evidenced in transport experiments using nanostructures with a high surface-to-volume ratio. Using a nanoparticle-based materials’ design, the highly porous macroscopic sample features a carrier density of the surface states in a comparable order of magnitude as the bulk carrier density. Further, the sintered nanoparticles impose energetic barriers for the transport of bulk carriers (hopping transport), while the connected surfaces of the nanoparticles provide a 3D percolation path for surface carriers. Within this work, I will discuss the nanoparticle processing as well as the transport properties of these combined thermoelectric and 3D TI samples. [more]

Nanoindentation based investigations of PLC-type plastic instability

Nanoindentation based investigations of PLC-type plastic instability
Portevin Le-Chatelier (PLC) effect is a type of plastic instability that results in severe strain localization, reduction in ductility and formation of surface striations during forming operations. Understanding the underlying microscopic mechanism(s) that govern it requires detailed experimental investigations of the relationships between the phenomenon and local microstructural constituents. Most current models of PLC, both phenomenological and theoretical, are based on descriptions of mesoscopic observations and global responses observed in stress-strain curves. More predictive (or physically based) models will require investigations at the microstructural length-scales. In this talk, it will be shown that the gap in understanding of the microscopic origins and macroscopic manifestations of PLC can be bridged by nanoindentation testing. Specifically, it will be shown that by exploiting the high resolution of force and displacement measurements and the site-specific capabilities of the nanoindenter, coupled with complimentary microstructural characterization techniques, we are able to gain new insight into critical aspects of the PLC effect, including its anisotropy, underlying governing mechanisms and associated activation parameters. [more]

The Heusler System (For Thermoelectric Application): How You Can Use the periodic table As A Lego Box To Build The States You Are Interested In

The Heusler System (For Thermoelectric Application): How You Can Use the periodic table As A Lego Box To Build The States You Are Interested In
The periodic table becomes one hundred years old just this year. The family of Heusler compounds uses nearly all the elements in the Periodic Table to allow for the design of materials with all sorts of properties. These include: hard and soft magnets, shape memory and magnetocaloric metals, thermoelectric semiconductors, topological insulators, and Weyl semimetals. These are just a few examples of more than 1000 known members of this remarkable class of materials that can display such a wide range of extraordinary multifunctional and tunable properties. Many more remain to be discovered! Just like a box of Lego bricks we can put together certain atoms (valence electrons), arranged in a particular symmetry, to achieve a desired electronic energy band structure. A necessary precondition for such a straightforward approach is a single particle picture: this allows for the prediction of many properties in this versatile class of materials, and equally enables “inverse design”. In my talk I will discuss the simple rules that we have learned to date and what the future might portend for further additions to the large and ever-growing Heusler family. [more]

TEM Studies on Materials with a Negative Poisson’s Ratio

TEM Studies on Materials with a Negative Poisson’s Ratio

Computational Modeling of Moving Boundary Problems

MPIE Seminar
The focus of this presentation is on computational methods for moving boundary/interface problems and its applications including fracture, fluid structure interaction, inverse analysis and topology optimization. First, two computational methods for dynamic fracture will be presented, i.e. the cracking particles method (CPM) and dual-horizon peridynamics (DH-PD). These methods do neither require a representation of the crack surface and associated complex crack tracking algorithms nor criteria for crack branching and crack interactions. They also do not need to distinguish between crack nucleation and crack propagation. Complex discrete fracture patterns are the natural outcome of the simulation. The performance of these methods will be demonstrated by several benchmark problems for non-linear quasi-brittle dynamic fracture and adiabatic shear bands. Subsequently, a local partition of unity-enriched meshfree method for non-linear fracture in thin shells -- based on Kirchhoff-Love theory -- exploiting the higher order continuity of the meshfree approximation will be presented. The method does not require rotational degrees of freedom and the discretization of the director field. This also drastically simplifies the enrichment strategy accounting for the crack kinematics. Based on the meshfree thin shell formulation, an immersed particle method (IPM) for modeling fracturing thin-structures due to fluid-structure interaction is proposed. The key feature of this method is that it does not require any modifications when the structure fails and allows fluid to flow through the openings between crack surfaces naturally.The last part of the presentation focuses on inverse analysis and topology optimization with focus on computational materials design of piezoelectric/flexoelectric nanostructures and topological insulators. In the first application of piezo/flexoelectricity, we use isogeometric basis functions (NURBS or RHT-splines) in combination with level sets since C1 continuity is required for the numerical solution of the flexoelectric problem. Hence, only the electric potential and the displacement field is discretized avoiding the need of a complex mixed formulation. The level set method will be used to implicitly describe the topology of the structure. In order to update the level set function, a stabilized Hamilton-Jacobi equation is solved and an adjoint method is employed in order to determine the velocity normal to the interface of the voids/inclusions, which is related to the sensitivity of the objective function to variations in the material properties over the domain. The formulation will be presented for continua though results will also be shown for thin plates. The method will be extended to composites consisting of flexible inclusions with poor flexoelectric constants. Nonetheless, it will be shown that adding these flexible inclusions will result in a drastic increase in the energy conversion factor of the optimized flexoelectric nanostructures. In the second application, we propose a computational methodology to perform inverse design of quantum spin hall effect (QSHE)-based phononic topological insulators. We first obtain two-fold degeneracy, or a Dirac cone, in the bandstructure using a level set- based topology optimization approach. Subsequently, four-fold degeneracy, or a double Dirac cone, is obtained by using zone folding, after breaking of translational symmetry, which mimics the effect of strong spin-orbit coupling and which breaks the four-fold degeneracy resulting in a bandgap, is applied. We use the approach to perform inverse design of hexagonal unit cells of C6 and C3 symmetry. The numerical examples show that a topological domain wall with two variations of the designed metamaterials exhibit topologically protected interfacial wave propagation, and also demonstrate that larger topologically- protected bandgaps may be obtained with unit cells based on C3 symmetry. [more]

Nanoscale thermodynamics at complex oxide surfaces and interfaces for application in electronics, sensing, and energy conversion

Perovskite oxides exhibit a plethora of fascinating electronic material properties covering an exceptionally wide range of phenomena in solid state and surface physics. This has led to tremendous efforts to functionalize these materials in applications for energy technology, gas sensing, and electronics. Layered in an atomically defined epitaxial heterostructures and superlattices, diverse properties of perovskites can be combined on the nanoscale level. In such structures, even new functionality can arise at interfaces of layered materials, exhibiting properties that are absent in the bare bulk materials. In our approach, we utilize atomically-defined layer growth to obtain desired material properties. However, on top of that, we employ thermodynamic engineering of crystal defects as a unique approach to functionalize material properties at surfaces and interfaces: Even at material synthesis conditions close to perfection, device properties are often determined by imperfection, hence, by lattice disorder and crystal defects. As we discuss, we can intentionally control defect structure in nanoscale devices, by developing and utilizing thermodynamic routes to trigger surface and interface reactions in confined systems. While historically defects were seen as something to be avoided, a change of paradigm is required in the field of complex oxides today: In these materials, we can promote functionality, such as metallicity in nominally insulating compounds, by atomic defect-management. Therefore, rather than avoiding defect formation, it is an essential necessity to control and to utilize defect formation in oxides on the nanoscale. Here, we discuss fundamental aspects of lattice disorder effects in bulk oxides, and elaborate the special character of defect formation in thin films, surfaces and interfaces. Focusing on SrTiO3 as a perovskite model system, we will crosslink fundamental perspectives on lattice disorder to actual applications, addressing different examples, such as resistive switching memories, high-mobility electron gases and induced magnetism, oxygen sensors, and electro-catalysts. [more]
Show more
Go to Editor View