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Many technologically important phenomena coupling complex chemistry with high-gradient elastic
fields such as thermally activated fracture [1], or stress corrosion [2] of brittle materials are beyond
the reach of First-Principles Molecular Dynamics (FPMD)-techniques, whether based on standard
or O(N) implementations. This is ultimately because the required model system sizes are too large,
and/or the required simulation times are too long, for these high-accuracy traditional approaches. In
most (but not all) situations, using classical MD is not a viable alternative, as suitably general and
accurate reactive force fields are not available, nor are fitting databases a priori guaranteed to contain
the information necessary to describe all the chemical processes encountered along the dynamics.
The problem, widespread in covalent/brittle systems, can arise in ductile metallic systems too [3].
Finally, QM/MM techniques combining quantum and classical zones in a single calculation also pose
significant difficulties, especially when the target processes involving sustained mass transport into
and out of the (e.g., fast moving) QM zone.

This situation strongly calls for the use of big-data based MD techniques, capable of locating and
using QM-accurate information pre-stored in massive databases, or generating it if no such informa-
tion is available. In practical realisations, these could be configuration databases dynamical coupled
with specially-tuned Machine Learning force fields which minimise the computational workload of
MD runs by allowing QM subroutine calls only when chemically novel configurations are encountered
along the systems trajectory. I will present one such Learn On the Fly technique, effectively unifying
First-Principles Molecular Dynamics and Machine Learning into a single, information efficient simu-
lation scheme capable of learning/predicting atomic forces through Bayesian inference [4]. Recently
developed covariant kernels specifically designed for direct force learning by Gaussian Process regres-
sion are at the core of this technique [5]. Interestingly, QM-zone partitioning approaches followed by
execution via any of the existing O(N3) QM engines is predicted to be a better option than using
O(N) QM methods when dealing with large QM zones in QM/MM calculations running on high-end
parallel platforms [6-7].
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