

Process-microstructure-property relationships in Ni- and Fe-based alloys processed by AM

Alloys for Additive Manufacturing Workshop MPIE Düsseldorf

Prof. Dr.-Ing. Thomas Niendorf July 2016

Research Partners

UNIKASSEL OV VERSITÄT

Institute of Materials Engineering

Agenda

- 1. Stainless steel 316L
- 2. Ni-based alloy IN 718
- 3. High-Mn Fe-based alloys

Agenda

1. Stainless steel 316L

- 2. Ni-based alloy IN 718
- 3. High-Mn Fe-based alloys

<u>Melting system:</u>	SLM 250 ^{HL} (SLM Solutions) • 400W fibre laser • Argon atmosphere	
Tested material:	 Stainless steel 316L Layer thickness: 30µm 	D
	 Average particle size: 40µm Platform temperature: 100°C 	D NA MITE

Treatment	1 (as-built)	2 (650°C)	3 (HIP)
Temperature [°C]	20	650	1150 (1000 bar)
Time [h]	-	2	4
Atmosphere	-	Argon	Argon

Prof. Dr.-Ing. Thomas Niendorf A. Riemer et al., Eng. Fract. Mech. 120, 2014, 15-25. AAMW 2016 5

UNIKASSEL OV VERSITÄT

Microstructure

Prof. Dr.-Ing. Thomas Niendorf S. Leuders, et al., J. Mater. Res. 29, 2014, 1911-1919. AAMW 2016 6

UNIKASSEL O VERSITÄT

Tensile tests:

- in accordance with ISO6892-1:2009
- as-built surface
- displacement controlled (5mm/min)
- tests performed on testing machine Instron 5569
- at ambient conditions

condition	UTS / MPa	YS / MPa	ε _f / %
as-built/SLM surface	565 ±5 MPa	462 ±5 MPa	53.7 ±2.6 %
650 °C/turned surface	595 ±5 MPa	443 ±5 MPa	48.6 ±2.6 %
traditionally processed	530-680	220	≈ 40

Prof. Dr.-Ing. Thomas Niendorf S. Leuders, et al., J. Mater. Res. 29, 2014, 1911-1919. AAMW 2016 8

Fatigue tests:

- *in accordance with* ASTM E466-07
- as-built and turned surface
- force controlled
- Frequency: 40 Hz
- Stress ratio: R = -1

condition	fatigue limit $\overline{\sigma}$ [MPa]
as-built/SLM surface	108
as-built/turned surface	267
650 °C/turned surface	294
HIPed/turned surface	317
traditionally processed	240-381

UNIKASSELO VERSITÄT

building direction

37,5 ±0,1

115

40 ±0,1

Rz 6,3

±0,03

5,1

37,5 ±0,1

9

/ Rz 25

UNIKASSEL OV VERSITÄT

Woehler type S-N-curves

Prof. Dr.-Ing. Thomas Niendorf S. Leuders, et al., J. Mater. Res. 29, 2014, 1911-1919. AAMW 2016 10

UNIKASSEL OV VERSITÄT

Fracture mechanics tests: Comparison of threshold values

- Effect of post-treatments
- Effect of crack growth direction

KASSEL

Т 'А'

Ε

R S

Higher threshold value for (\bot) -direction despite highest internal stresses in building direction superposed with testing load

=> small effect of internal stresses on crack growth

U N I K A S S E L V E R S I T 'A' T

Microstructure: Similar microstructure for as-built and 650°C

- elongated grains in building direction
- strongly textured

HIP condition exhibits

- · coarse grains, almost equiaxed
- absence of strong texture

as-built & 650°C

- Grains are elongated in the building direction
- Lower crack growth resistance along stretched grains => Lower threshold values
- For crack growth normal to building direction the boundaries are closer and act as barrier => higher threshold value

650°C

directior

K A S S E L

HIP

direction

ERSITÄT

as-built

HIP

- Absence of preferred grain orientation leads to similar thresholds
- Increase in thresholds due to elevated grain size
- Grain boundary as barrier
- crack growth at low load levels stops dependent on the microstructure present in front of the crack tip =>higher scatter

	as-built	650°C	HIP
Threshold (⊥) [MPa⋅m¹/2]	4.3	-	4.7
Threshold (=) [MPa·m ^{1/2}]	3	3	4.6

16

Agenda

- 2. Ni-based alloy IN 718
- 3. High-Mn Fe-based alloys

UNIKASSEL O VERSITÄT

What kind of microstructure can be obtained?

• Employed for processing of samples

→ SLM-280^{HL} → 400W / 1000W laser sources

- →layer thickness up to 150 µm
- → shell/core structures

Microstructure design

Microstructure/ grain shape

UNIKASSEL (VERSITÄT

Microstructure design

Microstructure/ grain shape

KASSEL Ε R S Т 'А' Т V

Anisotropy/texture

U

What kind of microstructure can be obtained?

- Microstructurally tailored
- Load-adapted design

Functionally graded by microstructure design

V

N I K A S S E L

ERSITÄT

UNIKASSEL OV VERSITÄT

Similar microstructure evolution for other alloys:

- > Solidification in cubic phase
- > No phase transformation upon cooling

➔ Ni-based alloys

Additive manufacturing is perfectly suited for direct microstructure manipulation

- Grain size & shape
- Anisotropy/ texture

Agenda

1. Stainless steel 316L

2. Ni-based alloy IN 718

3. High-Mn Fe-based alloys

UNIKASSEL OV VERSITÄT

AAMW 2016 25

Prof. Dr.-Ing. Thomas Niendorf M. Pröbstle et al., Mater. Sci. Eng. A, 2016, submitted.

Prof. Dr.-Ing. Thomas Niendorf M. Pröbstle et al., Mater. Sci. Eng. A, 2016, submitted. AAMW 2016

16 27

Presumably Nb-rich Laves phase

- Substructures in as-built condition
- Bright contrast in SEM => enrichment in Nb
- Laves phase particles

UNIKASSEL OV VERSITÄT

	Solution heat treatment	Aging heat treatment	
C&W	980°C / 1.5h	720°C / 8h	620°C / 8h
SLM – as built	-	-	-
SLM – DA	-	720°C / 8h	620°C / 8h
SLM – 930°C	930°C / 1h	720°C / 8h	620°C / 8h
SLM – 1000°C	1000°C / 1h	720°C / 8h	620°C / 8h

- Substructures are thermally stable
- Solutionizing eliminates segregations

- Substructures are thermally stable
- γ'' -phase evolves upon ageing

UNIKASSEL OV VERSITAT

IN 718 – Creep

No significant difference between different orientations

■ SLM material → superior creep strength

UNIKASSEL OV VERSITÄT

Prof. Dr.-Ing. Thomas Niendorf M. Pröbstle et al., Mater. Sci. Eng. A, 2016, submitted. AAMW 2016 35

UNIKASSEL O VERSITÄT

Prof. Dr.-Ing. Thomas Niendorf M. Pröbstle et al., Mater. Sci. Eng. A, 2016, submitted.
IN 718 – Creep

37

IN 718 – Creep

UNIKASSEL OF VERSITÄT

Compression creep

IN 718 – Creep

UNIKASSEL OV VERSITÄT

Compression creep

3.5 % δ

5.8 % δ but
finer δ
subgrains
smaller γ"
depleted
zone

Conventional C&W material:

- δ phase is necessary to pin the grain boundaries during RX
- Less Nb is available for the precipitation strengthening phase γ''

SLM material:

- δ phase is not necessary
 - \rightarrow heat treatments can be adjusted
- More Nb is available for solid solution hardening and the formation of strengthening γ'' precipitates

Higher creep strength of SLM IN718

IN 718 – Fatigue

UNIKASSEL OV VERSITAT

Single laser 400 W

Similar to 316L

Post-treated conditions

Nomenclature	Condition	Details
S	Solution annealed	1000 °C/1 h/Air Cooling (AC)
Н	Hot isostatically	1150 °C/1000 bar/4 h/Furnace Cooling (FC)
	pressed (HIPed)	
S+A	Solution annealed	1000 °C/1 h/AC + 720 °C/8 h /FC at 50 °C/h to 621 °C
	+aged	+ 621 °C/8 h /AC
H+A	HIPed+Aged	HIPed + 720 °C/8 h/FC at 50 °C/h to 621 °C + 621 °C/8
		h/AC
P+H	Arc-PVD+HIPed	1000 °C/1 h/AC + Arc-PVD(Ni-20Cr) + HIPed
P+H+A	Arc-	1000 °C/1 h/AC + Arc-PVD(Ni-20Cr) + HIPed +
	PVD+HIPed+Aged	720°C/8 h/FC at 50 °C/h to 621 °C + 621 °C/8 h/AC

UNIKASSEL OV VERSITAT

Optical microscopy

Low degree of porosity \rightarrow BUT: local differences

→ Most critical: porosity close to the surface cannot be eliminated by HIP

UNIKASSEL OV VERSITÄT

IN 718 – Fatigue

UNIKASSEL C VERSITAT (

IN 718 – Fatigue

Key parameter:

- Plastic strain
- Mean stress

Energy dissipation per cycle strongly increases upon HIP Microstructure design in Ni-based alloys

→ Thermal stability during solutionizing?

KASSEL

ERSITÄ

V

→ EBSD: Hardly any change in microstructure up to 1000 °C
 → <u>BUT</u>: Significant changes in hardness

Microstructure on different length scales

- → Sub-structures
- → Laves-Phase
 - Partially dissolved upon solutionizing at 1000 °C

15 µn

V

K A S S E L

[122]

15 µm

BD

ERSITÄT

UNIKASSEL OV VERSITÄT

Microstructure on different length scales

- ➔ Sub-structures
- → Laves-Phase
 - ➔ Partially dissolved upon solutionizing at 1000 °C
- \rightarrow γ "-phase evolves upon aging

VERSIT'A'T

KASSEL

Tensile tests: In good agreement with hardness evolution

Compression creep:

- ➔ Laves-Phase detrimentally affects creep rate
- → Inferior to the fine grained condition

Agenda

- 1. Stainless steel 316L
- 2. Ni-based alloy IN 718

3. High-Mn Fe-based alloys

300 µm

300 µm

UNIKASSEL OF VERSITÄT

New Materials processed by Additive Manufacturing

- Fe-based alloys
- TWIP steel
 - → delayed necking due to twinning
 - → extreme ductility
 - ➔ high hardening capability

Main goals

- Determination of mechanical performance and microstructural characteristics
 - after SLM
 - after heat treatment
- \rightarrow Comparison to thermo-mechanically processed blanks

Powder processing

→ TLS Technik, Bitterfeld

Process parameters

→ Same as for 316L stainless steel

Heat treatment

(aiming in recrystallization)

- In vacuum atmosphere
- 1h, 1050°C

Specimen geometry

Bulk material

Microstructure – Scanning electron microscopy

- Fairly large grains (Reference material from blank: 2-5 µm)
- Grains elongated parallel to BD
- Parallel features following deformation in numerous grains → Twins?
- Dislocation cells in several grains
 - ➔ submicron-scale
- Following heat treatment
 → large equiaxed grains

Microstructure – Scanning electron microscopy -EBSD

- Orientations plotted for LD
- Weak local texture for Asbuilt
- Following deformation
 → <111> <001> texture
- Slip and twinning
 → TWIP effect

UNIKASSEL OVERSITÄT

Microstructure – X-ray diffraction

- BD dominated by <001> in as-built
- <001> <111> in LD following deformation
 - → Slip and twinning → TWIP
- Randomization following heat treatment

Mechanical properties

suffer from surface quality

UNIKASSEL OV VERSITAT

- Reference: Conventionally processed sheet; UTS: 1160 MPa Elongation to failure: ~50 %
- Not ground SLM processed TWIP steel

→ slightly lower values

- SLM processed + ground
 almost equal
- Further increase of ductility following heat treatment

Prof. Dr.-Ing. Thomas Niendorf T. Niendorf et al., Mater. Character. 85, 2013, 57-63.

gauge

measured by use of caliper

N I K A S S E L ERSITÄT V

Mechanical properties

- Dimple like fracture → high ductility
- TWIP steel does not severely suffer pores

UNIKASSEL OV VERSITÄT

Microstructure:

- \rightarrow elongated grain morphology
- \rightarrow micro-scaled substructures
- \rightarrow <001> texture for BD

Mechanical performance:

→ High strength and ductility already in the as-built condition
→ TWIP effect

Compared to thermo-mechanically processed material:

 \rightarrow Similar properties

Well suited base material for future work

UNIKASSEL OV VERSITÄT

SLM TWIP steel as base for a new alloy solely processable by AM

TWIP-Ag

Bioresorbable implants

UNIKASSEL OF VERSITÄT

Microstructure – SEM

→ Ag is fairly homogeneously distributed within the TWIP matrix

New materials

UNIKASSEL OV VERSITÄT

Impact on the global and local corrosion behavior are evident
 Degradation rates in the human body should be increased

UNIKASSEL () VERSITÄT V

Conventionally processed Fe-Mn-Al-Ni SMAs

- > α (BCC) γ (FCC) phase transformation
- Max. transformation strain 12 % ([123] oriented single crystal)
- Theoretical transformation strains:
 26.5 % (Tension, [001])

Ref.: Omori et al., Science 2011

Conventionally processed Fe-Mn-Al-Ni SMAs

 β -precipitate: B2 (NiAl)

T A

K A S S E L

Precipitation of β-phase particles induced by ageing at 200°C
 Pre-requisite for thermo-elastic martensitic transformation

V

ERS

Ref.: Omori et al., APL 2012

HR-TEM: Nano-scaled β -phase precipitates

Conventionally processed Fe-Mn-Al-Ni SMAs

- > Low CC-slope (Increase of transformation stress at increasing temperature)
- ➢ Pseudoelastic temperature window 350 K
 - \Rightarrow Numerous fields for application

Critical transformation stresses for PE-response as a function of temperature for diverse SMAs

Application temperature ranges of diverse SMAs

Ref.: Omori et al., Science 2011

UNIKASSEL O VERSITÄT

Conventionally processed Fe-Mn-Al-Ni SMAs

Impact of microstructure

Stress (MPa)

Stress (MPa)

Fe-Mn-Al-Ni, Impact of grain size

Ref.: Omori et al., APL Materials 2013

Pronounced texture and coarse
microstructure are needed
→ Minimization of grain constraints

PE response of Fe-Mn-AI-Ni wires in different conditions

Fe-based shape memory alloys

Fe-Mn-Al-Ni SMAs processed by SLM

- Solidification in cubic phase (bcc)
- Similar impact of processing parameters and geometry as in case of 316L

Direct microstructure design

➢ BUT: Surface cracking

V

K A S S E L

ERSITÄT

Fe-based shape memory alloys

VERSIT'A'T

KASSEL

 BUT: High driving force for abnormal grain growth
 bamboo structures

Fe-based shape memory alloys

VERSIT'A'T

N I K A S S E L

Fe-Mn-Al-Ni SMAs processed by SLM

BUT: Rapid functional degradation

References

U N I K A S S E L V E R S I T 'A' T

- **T. Niendorf**, F. Brenne: Steel showing twinning-induced plasticity processed by selective laser melting An additively manufactured high performance material, Materials Characterization 85, 2013, 57-63.
- **T. Niendorf**, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze: *Highly anisotropic steel processed by selective laser melting*, Metall. Mater. Trans. B 44, 2013, 794-796.
- P. Kanagarajah, F. Brenne, T. Niendorf, H.J. Maier: Inconel 939 processed by Selective Laser Melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading, Mater. Sci. Eng. A 588, 2013, 188-195.
- A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Troester, **T. Niendorf**: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting, Eng. Fract. Mech. 120, 2014, 15-25.
- S. Leuders, T. Lieneke, S. Lammers, T. Tröster, **T. Niendorf**: On the fatigue properties of metals manufactured by Selective Laser Melting The role of material ductility, J. Mater. Res. 29, 2014, 1911-1919.
- **T. Niendorf**, S. Leuders, A. Riemer, F. Brenne, T. Tröster, H.A. Richard, D. Schwarze: Functionally graded alloys obtained by additive manufacturing, Adv. Eng. Mater. 16, 2014, 857-861.
- **T. Niendorf**, F. Brenne, P. Hoyer, D. Schwarze, M. Schaper, R. Grothe, M. Wiesener, G. Grundmeier, H.J. Maier: *Processing of new alloys by additive manufacturing – Iron-based alloys containing silver for biomedical applications*, Metall. Mater. Trans. A 46, 2015, 2829-2833.
- **T. Niendorf**, F. Brenne, P. Krooß, M. Vollmer, J. Günther, D. Schwarze, H. Biermann: *Microstructure evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting*, Metall. Mater. Trans. A 47, 2016, 2569-2573.
- M.E. Aydinöz, F. Brenne, M. Schaper, C. Schaak, W. Tillmann, J. Nellesen, T. Niendorf: On the microstructural and mechanical properties of additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading, Mater. Sci. Eng. A669, 2016, 246-258.
- F. Brenne, A. Taube, M. Pröbstle, S. Neumeier, D. Schwarze, M. Schaper, **T. Niendorf**: *Microstructural design of Ni-base alloys for high temperature applications Impact of heat treatment on microstructure and mechanical properties after Selective Laser Melting*, Progress in Additive Manufacturing, 2016, *in press*.
- M. Pröbstle, S. Neumeier, J. Hopfenmüller, L.P. Freund, **T. Niendorf**, D. Schwarze, M. Göken: *Superior creep strength of Inconel 718 produced by selective laser melting*, Mater. Sci. Eng. A, 2016, *submitted*.

Acknowledgements:

- DFG and DMRC for funding
- Dr. D. Schwarze (SLM Solutions)
- E. Aydinöz, F. Brenne, P. Kanagarajah, Dr. S. Leuders, A. Riemer (University of Paderborn, DMRC)
- Dr. S. Neumeier, M. Pröbstle (Materials Science & Engineering, Institute I, FAU)

Questions?

UNIKASSEL OVANINA VERSITAT

Inconel 939

- Ni-based superalloy
- Typical material for high-temperature applications

Main goals

- Determination of microstructural characteristics
 - after SLM
 - after solution-annealing
 - after ageing

Source: www.schleifblog.de

- Examination of mechanical properties
 - cyclic / montonic
 - room temperature / 750°C
 - horizontally / vertically manufactured specimens
- → Comparison to conventionally fabricated Inconel 939

Process parameters

	volume contour	volume area
hatch distance, mm	0.15	0.12
laser power, J s ⁻¹	100	175
laser speed, mm s ⁻¹	540	620
layer thickness, µm	30	30

Heat treatment

(standard for land-based turbine blades)

- In vacuum atmosphere
- Solution annealing: 4h, 1160°C
- Single stage ageing: 16h, 850°C

Specimen geometry

 Local chemical compositions

Microstructure, as-built – optical microscopy

→ Arch-shaped lines resulting from melt pool

Perpendicular to building direction

 \rightarrow Elongated structure due to laser movement

Microstructure, as-built – electron backscatter diffraction

- Columnar grains alongside the building direction
- Grains grow across several layers (>30µm)
- Thicker and shorter grains in case of vertically manufactured sample due to additional heat flux towards grip sections

→ No relation between the features as visible by optical microscopy and the grain orientation and morphology

Microstructure, aged – electron backscatter diffraction

ue to high annealing temperatures, high residual stresses)

ening → In comparison to cast material still small grain sizes!

of vertically manufactured sample (average grain diameter 35 μm vs. 70 μm)

UNIKASSEL OV VERSITÄT

Microstructure – X-ray diffraction

• Preferred orientation of the [001] fibre alongside BD \rightarrow optimally suited for high temperature creep

 \rightarrow Grain orientation highly dependent on heat flux during processing

• Much weaker texture after ageing due to recrystallization

As-built microstructure – transmission electron microscopy

- Elongated structures on very small scale parrallel to the building direction
- Likewise cell-shaped strucutures were found
 - \rightarrow Formation and distribution still is unclear
 - → Effect on the mechanical properties...?!

Microstructure, aged – transmission electron microscopy

- γ '-precipitates (Ni...)₃(AI,Ti,...) in both after SLM and casting
 - \rightarrow Hardening effect
 - \rightarrow Resistance against high temperature creep
- γ '-precipitates are larger in case of SLMed material \rightarrow reason?

Microstructure – transmission electron microscopy

- In addition to γ'-precipitates brittle phases are present already after ageing (normally after long time operation)
- Smaller γ'-precipitates already in the solution annealed condition (normally first during ageing)

 \rightarrow Formation kinetics much faster than in cast material

 \rightarrow Nuclei for precipitations are formed during SLM

UNIKASSEL OF VERSITÄT

Influence of building direction

Loading axis alongside building direction:

- Higher ductility
- Yield strength almost equal

Microstructural reasons:

- Cell-shaped substructures act as barriers for dislocation movement \rightarrow similar σ_v
- Elongated grains alongside BD → higher ductility

UNIKASSEL OVINIKASSEL OVINIKASSEL

Monotonic mechanical properties – impact of heat treatment

 \rightarrow Overall increase of yield strength

Microstructural reason: Formation of precipitates \rightarrow overall increase of σ_v

Loading axis alongside building direction:

- Higher yield strenght
- Ductility equal

Microstructural reason:

Substructures get dissolved, yield strength dominated by grain size \rightarrow higher σ_v

UNIKASSEL OV VERSITAT

Monotonic mechanical properties – influence of temperature

Clearly decreased ductility of as-built condition

 \rightarrow Fast formation of precipitates + embrittlement

KASSEL IJ S **T** 'A' Ε V R

Monotonic mechanical properties – comparison to cast material

 $\sigma_{y,SLM}$ = 750 MPa – 950 Mpa $\sigma_{y,cast}$ = 500 MPa – 800 Mpa

as-built / as-cast - RT:

- \rightarrow Significantly higher ductility in case of as-built SLM

60 µm

300 µm

UNIKASSEL OVI VERSITÄT

Temperature influence – as-built / as-cast conditions

 $\sigma_{y,SLM}$ = 750 MPa – 950 Mpa $\sigma_{y,cast}$ = 500 MPa – 800 Mpa

UNIKASSEL OV VERSITÄT

Temperature influence – aged condition

σ_{y,SLM}= 750 MPa – 950 Mpa σ_{y,cast}= 500 MPa – 800 Mpa

Fatigue lifes - as-built / as-cast condition

condition	SLMed, as-built	SLMed, aged	cast, as-cast	cast, aged
N _f , RT	4702	1598	313	2677
N _f , 750 °С	209	73	230	272

→ At RT higher fatigue life for as-built SLMed material (although not polished)

Reason:

Strain amplitude of 0.5 % leads to relatively high stresses

- \rightarrow Yield strength of cast material is exceeded
- \rightarrow Loading of SLMed material is mere elastic

At lower strain amplitudes (0.35 %) similar fatigue lifes were reached for both SLM and cast material

Fatigue lifes – aged conditions

condition	SLMed, as-built	SLMed, aged	cast, as-cast	cast, aged
N _f , RT	4702	1598	313	2677
N _f , 750 °С	209	73	230	272

Reason:

- SLM: Formation of brittle phases and process induced defects (pores)
- \rightarrow Higher sensitivity to crack initiation and growth

Cast: Increase of yield strength due to precipitates \rightarrow Lower plastic strain amplitude

→ Lower fatigue life for aged SLMed material (even if polished)

Fatigue lifes – temperature influence

condition	SLMed, as-built	SLMed, aged	cast, as-cast	cast, aged
N _f , RT	4702	1598	313	2677
N _f , 750 °С	209	73	230	272

→ General reduction of fatigue life in comparison to RT

Reason:

Enhanced dislocation mobility, typically occurring at high temperatures

Restricitions:

Only few tests were conducted \rightarrow scatter?

Conclusions

UNIKASSEL OV VERSITAT

Microstructure:

- \rightarrow fine columnar grains
- \rightarrow micro-scaled substructures

Two-stage heat treatment:

- \rightarrow recrystallization
- \rightarrow still grain sizes significantly lower than in the cast alloy

Monotonic load:

- \rightarrow High ductility of the as-built condition
- \rightarrow Increase of yield strength and embrittlement by ageing

Compared to cast material:

→ always higher yield strength in case of SLMed material

UNIKASSEL OVERSITAT

Cyclic loading at RT:

 \rightarrow Better performance of the as-built SLM-processed condition

- \rightarrow fast formation of precipitates
- \rightarrow embrittlement of the SLM-processed as-built condition
- ightarrow Reduction of ductility and fatigue lives

