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Micro & macro modelling

AM Research
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Multi-functional AM A Hybrid AM
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AMPL

Pres tline

O Maximising the material, component & process
performance through:

— Modelling (macro & micro-scale, semi-empirical)

— Microstructural control

— Understanding the structure-property development
— Functional AM structures

— Large scale deposition

— Post-processing

— Hybrid processing

— Alloy development for AM
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High speed imaging of SLM
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Understan Ics of SLM
Micro-M I-GAI-4V

O Aim: Investigate the role of melt flow on the morphology of the
build surface structure and porosity development during SLM.

O Approach: CFD Modelling the laser-powder interaction (melt

splashing and pore formation), and linking the surface structure
and porosity to melt flow.
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I\/Iicro—l\.g (SLM)
Influenc hickness

O Investigating the laser-powder interaction (melt splashing and
pore formation) as a function of powder layer thickness and
laser speed), correlating with surface structure and porosity.

TK) T(K
lul (m/s) 1928 lul (I'I'IIS) ( )1 928
5 E : 5
4 ~ 1600 7 ~1600
Eﬂm E £1200
:»2 500 2 ~ 800
- ‘
0 300 0 300

%@ nterdisciplinary ~. CQiu, C Panwisawas, RM Ward, HC Basoalto, UNIVERSITYOF

esearch_-—u “2%’ JW Brooks, MM Attallah*. Acta Materialia, 2015;
Centre U 4 vol. 96, pp. 72-9. BIRMINGHAM




Micro-Modelling (SLM)

Influence of Layer Thickness
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during SLM

der Interaction

Rationalising
Micro-Modelling

O Increased scanning speed and powder layer thickness may
increase evaporation, and thus the Marangoni force and recaoil
pressure, which leads to more unstable melt flow

11111 Evaporation
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Influence of La N Single Tracks

O Gaussian distribution of powders.

O The laser melted track becomes increasingly irregular-shaped
and intermittent with increased powder layer thickness
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Mac
Direct La

lling

ion (DLD)

(]

Thicker-layers (—0.5-1 mm): appropriate for Finite-Element
Approaches:

U Element birth technique: each element is activated at a time to
depict laser deposition strategy, with re-meshing occurring.

0 Chewing gum model: stiffness matrix is modified from ‘chewing
gum’ properties to actual material properties after deposition.

Can be used to predict the microstructural development, temperatures
and residual stresses
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(DLD)

delling & Measurement

Macro-
DLD of IN718: Residua

O Element birth (multi-element activation) can predict the temperature
and residual stress development at a low computational cost.
O Reducing the ‘fudge factors’ into a single efficiency factor.

O Neutron diffraction measurements were used to validate the model
predictions, showing a good agreement.
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(Semi)-E

Energy Densi

Modelling
-Superalloys)

O Energy density E (J/mm?)= P/(v*h)
P is laser Power (W), v is scan speed (mm/s), h is hatch spacing (mm)

O Similar alloys require an energy density threshold to achieve full
consolidation, but cracking density does not correlate well.

O The energy density can be used to improve the parametric
studies and reduce the number of trials.
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(Semi)

delling
How Good Ity Model?
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Microstr

Direct Laser Dep

| (DLD)

rent Parameters)

TR

O Grain size & texture
(crystrallographic
orientation) can be
controlled to achieve specific
performance, even on a
local level.

O Detrimental phases can be
controlled.

—— & needles
....... Carbide.

A N —

LL Parimi, Ravi GA, D Clark, MM Attallah.
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Microstru

Direct Laser Depositio

rol (DLD)

rent Scan Strategies)

O The scan strategy strongly influenced the grain morphology & texture.
O Post-scanning resulted in continued epitaxial growth.
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Microst | (DLD)
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trol (SLM)

N Strategies

Microstruc

Island Scan

O Laser powder bed systems use proprietary scan strategies that
aim to balance/reduce the residual stress development.

O Strong correlations between the occurrence of structural defects
and the laser scan strategies in Ni-superalloys.

'%f‘%; "tefdg;g’;‘é“ é = LN Carter, C Martin, PJ Withers, MM Attallah. Journal of UNIVERSITYOF
Em- Centre *‘71* Alloys and Compounds, 2014, Volume 615, pp. 338-347 BIRMINGHAM
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trol (SLM)

N Strategies

Microstruc

Island Scan

O Laser powder bed systems use proprietary scan strategies that
aim to balance/reduce the residual stress development.

O Strong correlations between the occurrence of structural defects
and the laser scan strategies in Ni-superalloys.
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Microst

Island Sca

| (SLM)

elopment

(a) {100} YO

13.67
(b) {100}

nterdlsmplmary

Researc LN Carter, C Martin, PJ Withers, MM Attallah. Journal of UNIVERS ITYOF
Centre

Alloys and Compounds, 2014, Volume 615, pp. 338-347  BTRMINGHAM




23

Microstructural Control (SLM)

Slmple Scan Strategy Texture Development

#=| ow cracking
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Microstructural Control (SLM)

Simple Scan Strategy: Texture Development
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ue to SLM
lloys) ?

Rapid Soli

How Ra

O SLM creates a columnar y-grain microstructure, containing
virtually identically oriented y-cells of size —~ 600 nm.

O The cells are separated by vy'/y eutectic and a high density of Hf-
rich precipitates, with a noticeable dislocation activity.

O The PDAS suggest cooling rates —10° K/s.
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due to SLM
of Cracking

Rapid Solidi

Microstruct

O High dislocation activity (residual stress), particularly at the cell
boundaries and at the vicinity of the (Hf,Ti,Ta)-rich particles.

O Al-evaporation, as spatter or vapour/plasma, creating
condensed Al-rich particles.

nterdisciplinary X Wang, N Read, LN Carter, RM Ward, MH Loretto, UNIVERS ITYOF

esearch ._.._=- :E‘:"‘ MM Attallah: Superalloys 2016, Seven Springs, USA,
Centre September 2016. B I RM I NGHAM
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Maximising the Production Rates
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I-g

O Aim: Improve SLM productivity through creating a powder-filled
shell, to be later HIPped.

O Key challenge:
— FE modelling to predict the shape change due to HIPing.

— Bond quality

% % "terd'”“p"“"“ C Qiu, NJE Adkins, H Hassanin, MM Attallah*, K UNIVERS ITYOF
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IN-Sit fTi-64

O Aim: Develop a novel in-situ shelling route to produce net-shape
components with improved efficiency.

O Key findings:
— Developed an iterative FE model to predict the shape change
during HIPing, to design of SLMed tooling (pre-cursor shell).

— Enhance the bond quality between the SLMed and HIPed parts.

*=Initalshape Sample Normal ' 600pm
—final shape after
modelling
—final shape after
HIPing
L. -
2 SLM HIP
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-lsters

Weld, fill
can & HIP

. Then pickle

SLM with
iron powder

CAD design
of HIP
container

Disclaimer

Fe HIP canisters are disposable.

Only use for un-SLM-processable
alloys (e.g. crack-susceptible alloys).

3. Shrinkage need to be accounted for
using FE modelling.
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NbSi1 SLM-
Net Sha

INng Route
(Vane)

O Post-processing is required to
remove the diffusion layer
between the Fe-tooling and the
component.

 Nb/NbSi,

A 500 um
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Functional Structures

Lattices, Auxetics, & Drug
Delivering Structures
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SLM of L
The Limi

ructures
solution

O Aim: Investigate the influence of SLM parameters on the strut size,
Internal porosity and compressive strength of lattice structures.

O Key findings:
— Characterisation of the internal porosity of lattices.
— Microstructural and mechanical properties developments.
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SLM of
The Li

uctures
olution

O Aim: Investigate the influence of SLM parameters on the strut size,
Internal porosity and compressive strength of lattice structures.

O Key findings:
— Characterisation of the internal porosity of lattices.
— Microstructural and mechanical properties developments.
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Ceramics
pulsion

Transfor
Ceramic

The formation of ceramic lattices via oxidation of a metal preform.
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H. Hassanin, N. Adkins, D. Jarvis and W Voice

“Manufacturing of A Ceramic Article from a metal perform [N [V ERSITYOF
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1hts

Catalyst Beds

Res
Additive Manu

O Aim: to use additive Manufacturing as a Key Enabler for

Enhanced Monopropellant Catalyst Bed Design. x\\w
f-esa
O Approach: \\\

— Design and computational fluid dynamics calculations.

— Develop a novel additive manufacturing route suitable for
catalyst bed applications and define their limitations.

— Manufacture a breadboard catalyst bed and perform firing tests.

1= B
Design and CFD Temperature Increase
(firing test)
Coated Catalyst Bed Thruster After firing
niedisiplinary A T © AMPLab 2016 UNIVERSITY©OF
Centre = BIRMINGHAM
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In SLMed Implants
rapeutics (NIDMET)

O The use of ALM in the manufacture of drug-delivering metallic
implants.

Monitoring Drug R
Implants with Embe

O Drugs will be fed into the implants during fixation, and will be

dispensed during their life to decrease the likelihood of
infection.

P AL e

T e e e o T
e e e T S

SC Cox, H Hassanin, MM Attallah, DE Shepherd, O
nterdisciplinary d d ’ ’ F
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TINI Fun

AM F

ructures

ures

O Sonic crystals: Structure blocks certain wavelength.
O Auxetic structure: Negative Poisson’s ratio.
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Re hts
SLM on TiNI ysS Auxetics

O Aim: Using selective laser melting (SLM) to produce NiTi auxetic
structure components with superelastic effect.

O Key findings:
— Reduction of cracking and porosity;

— Using heat treatment to improve shape memory performance;
— Achlevmg auxetic performance during mechanical testing.
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AL NITI

O

Powder quality: Functionality sensitive to oxygen content.

O Cracking susceptibility: due to residual stresses and the
presence of brittle intermetallics.

O Control of defects via laser parameters: pores or cracks
O Ni-evaporation

O Formation of intermetallics: a need for thermal post
processing.

S Li, H Hassanin, MM Attallah*, NJE Adkins, K Essa: UNIVERS ITYOF
Acta Materialia 105, 75-83, 2016. B I RMINGHAM
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DLD of Large Ti Structures
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Resear
Netshaping usin

(DLD)
position of Ti-64

O Technology scale up at UoB to produce large (>1m long structures)
through optimisation of the process parameters and tool path to

minimise porosity and microstructural heterogeneity, and maximise the
geometrical consistency.

O The properties of the final component (after HIPping) were similar to
a conventionally manufactured component, with significant reduction in
material waste and processing time.

2§ Interdisciplinary é \ . C Qiu, GA Ravi, C Dance, A Ranson, S Diworth, MM [JNIVERSITYOF

esearch Attallah*: Journal of Alloys & Compounds 629, 351-61,

Centre - 2015. BIRMINGHAM
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Challenges
arge Structures

Addressing
Modelling Distc

O Developing rapid simulations without undermining the
computational accuracy.
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Maximising Performance
Thermal Post-Processing
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Ti- er)

O HIPping closed most of the spherical pores within the build
microstructure, but struggled with lack of fusion defects.

Lack of fusion
defect

Pores collapsed
after HIPping

C Qiu, GA Ravi, C Dance, A Ranson, S Diworth, MM~ [JNIVERSITYOF
T - Attallah*: Journal of Alloys & Compounds 629, 351-61,
Réentre 7 VI s o BIRMINGHAM
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Research ts (DLD)
Netshaping using Deposition of Ti-64

O The as-fabricated samples show generally high UTS but low EL
O The horizontal samples show better EL% than vertical ones.

O HIPping considerably improved the ductility with the reduction of
tensile strength.

1000 1 1000
800 1 800
g g
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0 b7 .
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C Qiu, GA Ravi, C Dance, A Ranson, S Diworth, MM [JNIVERSITYOF
Attallah*: Journal of Alloys & Compounds 629, 351-61,
b015, BIRMINGHAM
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SAI-4V SLM

1 Orientation

Tensile Prc
As-Fabricate

O HIPping results in coarsening the fine a/a’ structure to the o+f
microstructure, slightly dropping the tensile strength.

O Considerable improvement in the tensile ductility was observed
following HIPing, for both orientations (vertical & horizontal).

O The vertically-built specimens showed a generally higher tensile
elongation (either as-fabricated or HIPed).

7 Zalongation (%) - 20
o )

10

Tensile Elongation (%)

HIPed
Vertical

o 8 “terdi“ip“"mﬁ é A A T C Qiu, NJE Adkins, and MM Attallah*Materials UNIVERSITYOF
, CICACLL ==X U%ﬁ’ Science and Engineering A 578, 230-239, 2013. ﬁl RMINGHAM
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Fatigue Pro 6Al-4V SLM

As—Fabricated-d Orientation

O HIPping results in an improvement in the fatigue life,
yet still a scatter exists after HIPping, but generally
similar to Cast+HIP or wrought Ti-6Al-4V.
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HIPping fo (Post SLM)

Build Direction (Z)

O -HIPping has been shown to effectively close internal cracks

>
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AccV SpotMagn = Det WD i—-—-——:——{ 100 u;n X :
200 kV 7.0 200x BSE-99 3 30

SLM Fabricated CM247LC Before and After HIPping

LN Carter, MM Attallah, RC Reed. Proceedings of F
Superalloys 2012, Seven Springs, PA, USA, 9-13 UNIVERS ITYO
September 2012. B I RM I NGHAM
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HIPping for- (Post SLM)
C y

O HIPping cannot close the surface-connected cracks.

Before HIP

Outer region vulnerable
to surface connected
cracks (Approx.
1mm-1.5mm wide)

Build Direction

After HIP

LN Carter, MM Attallah, RC Reed. Proceedings of F
Superalloys 2012, Seven Springs, PA, USA, 9-13 UNIVERS ITYO
September 2012. B I RM I NGHAM
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of Al-Alloys
OMg Alloys

Post-Proces
HIPping of

O Highly susceptible to oxide film PELELY T
defects, resulting in poor "a_- = - direction:
wetting/melt penetration, and , s 2.
lack of fusion defects. - _

O HIPping collapses the oxide film o | W
defects, but remnants of the -
oxide films are visible. ;

As-fabricated. (1000 ym,
c) . b R
| XY AN N

O Post-processing reduces the e O s
strength due to the coarsening ol -,,..2‘-. ¢ 3N LN N
of the grain structure. \ BT g \ o Noe. ek
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Post-Pro
HIPpi

Al-Alloys
Alloys

O Highly susceptible to oxide film
defects, resulting in poor
wetting/melt penetration, and

lack of fusion defects. As Fabricated 16
Building Building -
: : : - - Direction »
O HIPping collapses the oxide film Pireggel S gy iy
defects, but remnants of the > v Melt pool

O Post-processing reduces the
strength due to the coarsening

|

|

: : . |
oxide films are visible. Melt pools |
|

of the grain structure. |
|

|

|

"terd:;iepg;grﬁ é A0 U Tradowsky, J White, RM Ward, N Read, W Reimers, UNIVERSITYOF
£\ ULﬁik MM Attallah: Materials & Design, in press, 2016. BIRMINGHAM
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Po OyS

O Highly susceptible to oxide film
defects, resulting in poor
wetting/melt penetration, and
lack of fusion defects.

O HIPping collapses the oxide film
defects, but remnants of the
oxide films are visible.

O Post-processing reduces the
strength due to the coarsening
of the grain structure.
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U Tradowsky, J White, RM Ward, N Read, W Reimers, UINIVERSITYOF
MM Attallah: Materials & Design, in press, 2016. BIRM INGHAM
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Alloy Development
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Next Genera M Materials

O The majority of metal AM work has focused on a
limited alloy list: AlISI, IN718, Ti-64, & 316L, typically
alloys for casting, forging, rolling, but not AM.

O Other investigated alloys were prone to defects:
— Cracking (high y’ Ni-superalloys)
— Residual stress
— Gas porosity

O There is a need to develop AM-specific alloys, by
tailoring existing alloys or using the flexibility of AM
In alloy development.

esearch A © AMPLab 2016 UNIVERSITY©OF
Centre BIRMINGHAM
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Alloy Developme mental Powders
SLM of alloys

O Mixing of elemental powders (Al+Si) to
create tailored CTE structures (in-situ), to
avolid the need for pre-alloyed powders.

= s © AMPLab 2016 UNIVERSITYOF
BB I esggn.gA‘ e BIRMINGHAM




58

Alloy Developme. Powder Doping
S d

O Aim: Develop modified Ti-based alloy using SLM to improve
corrosion resistance.

O Approach:
— Mix powder Ti-64 powder with Pd using a novel mix technique
— Chemical analysis of as-SLMed samples
— Evaluate corrosion behaviour with and without Pd addition

ol o ) o © AMPLab 2016 UNIVERSITY©F
LF BIRMINGHAM

Centre
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ment
ynthesis

Alloy

Laser Co

O Combinatorial Synthesis (CS): the production of a large number
of alloy combinations in a simple process to identify new alloy
combinations with interesting properties.

— Developed in Birmingham Wire Feeder

O Wire-based combinatorial synthesis .. | v

— Laser beam melts elemental wires.
— Composition is adjusted by wire-feeding sp

— High-throughput: alloy buttons in 5 minute

O Current activities: design of metallic alloy
— High temperature smart materials
— Thermoelectric materials

— Superconductors
— Corrosion-resistant materials F. Point
%' % Interdlsuplmdr\ S Li, S Liu, NJE Adkins, MM Attallah: Proceedings of UNIVERS ITYOF
esearc ‘-ﬁé the TMS Annual Meeting, USA, February 2014.
=8 1 R Centre 7V BIRMINGHAM
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T h

L

Powder feed
(if required)

> Laser melting

U

Mounting/
Polishing

2

Testing

UNIVERSITY©OF
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Concluding Remarks
Work In-Progress

¢ I esearch___ﬂ B © AMPLab 2016 UNIVERSITYOF
&5 1 R Centre BIRMINGHAM
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Work -)g ress

O Refractory metals AM for fusion applications (W, Cr, Mo, V).

O AM for materials for quantum metrology applications
(permalloy, Invar36)

O Hybrid AM processing for Ni-superalloys.

O AM of PGM-modified superelastic TiNi alloys for medical
applications.

O Modelling of powder spreading using discrete element
modelling, combined with micro-CT validation.

O Meltpool modelling, as a function of laser tool path.
O Post-processing of electron beam melting in Ti-64.

%% I'““"ggg’g:gg“ S © AMPLab 2016 UNIVERSITYOF
=8 I RCentre 7 'V BIRMINGHAM
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Those who ha\.done the work

Above: K. Gulia, A. Field, S. Megahed, M. Aristizabal, W Wang, P Jamshidi, T. Hanemann,

N. Read, H. Baker, R. Jennings, S. Baker, S. Li, S. McCain, L. Carter, M. Glynn, JP White,
H. Hassanin, U. Tradowsky, J. Macdonald, Y. Gaber, C. Qiu, RM Ward

Not present: Ravi GA, M. Loretto, K. Essa, X Wang, S Liu, L. Parimi, C. Panwisawas, HC
Basoalto, JW Brooks, NJA Adkins.

Follow us @amplab unibham
M.M.Attallah@bham.ac.uk
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Cha”e-tal AM
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