

Maximising the Performance of Laser-Powder AM

Prof. Moataz Attallah (on behalf of AMPLab) **Director, Advanced Materials & Processing Lab (AMPLab)** Interdisciplinary Research Centre, School of Metallurgy & Materials

© AMPLab 2016

AMPLab's AM Scope Presentation Outline

- Maximising the material, component & process performance through:
 - Modelling (macro & micro-scale, semi-empirical)
 - Microstructural control
 - Understanding the structure-property development
 - Functional AM structures
 - Large scale deposition
 - Post-processing
 - Hybrid processing
 - Alloy development for AM

AN Modelling Micro, Macro, & Empirical

Selective Laser Melting A.K.A. Manufacturing By Chaos

High speed imaging of SLM

JP White, N Read, RM Ward, R Mellor, MM Attallah. Proceedings of Materials Science and Technology Conference 2014. p. 1985-92.

Understanding the Physics of SLM Micro-Modelling of SLM of Ti-6AI-4V

- □ Aim: Investigate the role of melt flow on the morphology of the build surface structure and porosity development during SLM.
- □ **Approach**: CFD Modelling the laser-powder interaction (melt splashing and pore formation), and linking the surface structure and porosity to melt flow.

Modelling

C Qiu, C Panwisawas, RM Ward, HC Basoalto, JW Brooks, MM Attallah, Acta Materialia, 2015; vol. 96, pp. 72-9.

UNIVERSITY OF BIRMINGHAM

4000

2400 mm/s

Micro-Modelling (SLM) Influence of Layer Thickness

Investigating the laser-powder interaction (melt splashing and pore formation) as a function of powder layer thickness and laser speed), correlating with surface structure and porosity.

Micro-Modelling (SLM) Influence of Layer Thickness

C Qiu, C Panwisawas, RM Ward, HC Basoalto, JW Brooks, MM Attallah. Acta Materialia, 2015; vol. 96, pp. 72-9.

Rationalising Melt Flow during SLM Micro-Modelling of Laser-Powder Interaction

Increased scanning speed and powder layer thickness may increase evaporation, and thus the Marangoni force and recoil pressure, which leads to more unstable melt flow

Micro-Modelling (SLM) Influence of Layer Thickness on Single Tracks

	Gaussian	distribution	of	powders.
--	----------	--------------	----	----------

 The laser melted track becomes increasingly irregular-shaped and intermittent with increased powder layer thickness
20µm

60µm

80µm

100µm

Panwisawas *et al.* In preparation

400W-2400mm/s

Macro-Modelling Direct Laser Deposition (DLD)

□ Thicker-layers (~0.5-1 mm): appropriate for Finite-Element

□ Approaches:

- Element birth technique: each element is activated at a time to depict laser deposition strategy, with re-meshing occurring.
- Chewing gum model: stiffness matrix is modified from 'chewing gum' properties to actual material properties after deposition.
- Can be used to predict the microstructural development, temperatures and residual stresses

Macro-Modelling (DLD)

13

DLD of IN718: Residual Stress Modelling & Measurement

- Element birth (multi-element activation) can predict the temperature and residual stress development at a low computational cost.
- □ Reducing the '**fudge factors**' into a single efficiency factor.
- Neutron diffraction measurements were used to validate the model predictions, showing a good agreement.

(Semi)-Empirical Modelling Energy Density Model (Ni-Superalloys)

LN Carter, X Wang, N Read, M Aristizabal, K Essa, RH Khan, **MM Attallah*** Materials Science and Technology, in press, 2016.

(Semi)-Empirical Modelling How Good is the Energy Density Model?

© AMPLab 2016

Design & Control of Microstructure

Microstructural Control (DLD) Direct Laser Deposition of IN718 (Different Parameters)

LL Parimi, Ravi GA, D Clark, MM Attallah. Materials Characterization, 2014, vol. 89, pp. 102-11.

nterdisciplinary

esearch

Microstructural Control (DLD) Direct Laser Deposition of IN718 (Different Scan Strategies)

The scan strategy strongly influenced the grain morphology & texture.
Post-scanning resulted in continued epitaxial growth.

Microstructural Control (DLD) Pulsed DLD of Ti-64

Microstructural Control (SLM) Island Scan Vs. Simple Scan Strategies

- □ Laser powder bed systems use proprietary scan strategies that aim to balance/reduce the residual stress development.
- □ Strong correlations between the occurrence of structural defects and the laser scan strategies in Ni-superalloys.

LN Carter, C Martin, PJ Withers, MM Attallah. Journal of Alloys and Compounds, 2014, Volume 615, pp. 338-347

Microstructural Control (SLM) Island Scan Vs. Simple Scan Strategies

- □ Laser powder bed systems use proprietary scan strategies that aim to balance/reduce the residual stress development.
- □ Strong correlations between the occurrence of structural defects and the laser scan strategies in Ni-superalloys.

LN Carter, C Martin, PJ Withers, MM Attallah. Journal of Alloys and Compounds, 2014, Volume 615, pp. 338-347

Microstructural Control (SLM) Island Scan Strategy: Texture Development

LN Carter, C Martin, PJ Withers, MM Attallah. Journal of Alloys and Compounds, 2014, Volume 615, pp. 338-347

23 Microstructural Control (SLM) Simple Scan Strategy: Texture Development Low cracking Grain boundary character? Direction canning 111 001 101 500 ium

IPF map showing orientation with respect to the laser scanning direction (Y axis)

LN Carter, C Martin, PJ Withers, MM Attallah. Journal of Alloys and Compounds, 2014, Volume 615, pp. 338-347

Microstructural Control (SLM)

Simple Scan Strategy: Texture Development

IPF map showing orientation with respect to the laser scanning direction (Y axis)

LN Carter, C Martin, PJ Withers, MM Attallah. Journal of Alloys and Compounds, 2014, Volume 615, pp. 338-347

Microstructural Development Ni-Superalloys

Rapid Solidification due to SLM How Rapid (Ni-Superalloys) ?

- □ SLM creates a columnar γ -grain microstructure, containing virtually identically oriented γ -cells of size ~ 600 nm.
- □ The cells are separated by γ'/γ eutectic and a high density of Hfrich precipitates, with a noticeable dislocation activity.
- □ The PDAS suggest cooling rates ~10⁶ K/s.

Rapid Solidification due to SLM Microstructural Causes of Cracking

- High dislocation activity (residual stress), particularly at the cell boundaries and at the vicinity of the (Hf,Ti,Ta)-rich particles.
- Al-evaporation, as spatter or vapour/plasma, creating condensed Al-rich particles.

X Wang, N Read, LN Carter, RM Ward, MH Loretto, MM Attallah: Superalloys 2016, Seven Springs, USA, September 2016.

SLM/HIP In-Situ Shelling

□ Aim: Improve SLM productivity through creating a powder-filled shell, to be later HIPped.

□ Key challenge:

- FE modelling to predict the shape change due to HIPing.
- Bond quality

C Qiu, NJE Adkins, H Hassanin, **MM Attallah***, K Essa:, Materials & Design 87, 845-853, 2015.

SLM/HIP In-Situ Shelling of Ti-64

- □ Aim: Develop a novel in-situ shelling route to produce net-shape components with improved efficiency.
- □ Key findings:
 - Developed an iterative FE model to predict the shape change during HIPing, to design of SLMed tooling (pre-cursor shell).
 - Enhance the bond quality between the SLMed and HIPed parts.

C Qiu, NJE Adkins, H Hassanin, **MM Attallah***, K Essa:, Materials & Design 87, 845-853, 2015.

SLM-HIP of NbSi SLM of Fe HIP Canisters

BIRMINGHAM

NbSi SLM-HIP Processing Route Net Shape Tooling by SLM (Vane)

Post-processing is required to remove the diffusion layer between the Fe-tooling and the component.

BIRMINGHAM

Functional Structures

Lattices, Auxetics, & Drug Delivering Structures

SLM of Lattice Structures The Limit of SLM Resolution

- □ Aim: Investigate the influence of SLM parameters on the strut size, internal porosity and compressive strength of lattice structures.
- □ Key findings:
 - Characterisation of the internal porosity of lattices.
 - Microstructural and mechanical properties developments.

C Qiu, S Yue, NJE Adkins, RM Ward, H Hassanin, PD Lee, PJ Withers, MM Attallah. Materials Science and Engineering A, 2015, vol. 628, pp. 188-97.

SLM of Lattice Structures The Limit of SLM Resolution

- □ Aim: Investigate the influence of SLM parameters on the strut size, internal porosity and compressive strength of lattice structures.
- □ Key findings:
 - Characterisation of the internal porosity of lattices.
 - Microstructural and mechanical properties developments.

C Qiu, S Yue, NJE Adkins, RM Ward, H Hassanin, PD Lee, PJ Withers, MM Attallah. Materials Science and Engineering A, 2015, vol. 628, pp. 188-97.

Transforming Metals to Ceramics Ceramic Catalyst Bed for Propulsion

The formation of ceramic lattices via oxidation of a metal preform.

H. Hassanin, N. Adkins, D. Jarvis and W Voice "Manufacturing of A Ceramic Article from a metal perform UNIVERSITY OF provided by 3D-Printing or 3D-Weaving ", European Patent Office (EPO), PCT/EP2013/075550, 2013.

BIRMINGHAM

Research Highlights

Additive Manufacturing of Ceramic Catalyst Beds

□ Aim: to use additive Manufacturing as a Key Enabler for Enhanced Monopropellant Catalyst Bed Design.

□ Approach:

- Design and computational fluid dynamics calculations.
- Develop a novel additive manufacturing route suitable for catalyst bed applications and define their limitations.
- Manufacture a breadboard catalyst bed and perform firing tests.

Monitoring Drug Release in SLMed Implants Implants with Embedded Therapeutics (NIDMET)

- □ The use of ALM in the manufacture of drug-delivering metallic implants.
- Drugs will be fed into the implants during fixation, and will be dispensed during their life to decrease the likelihood of infection.

SC Cox, H Hassanin, MM Attallah, DE Shepherd, O Addison, U Gbureck, LM Grover. Materials Science & Engineering C: 2016.

TiNi Functional Structures

Sonic crystals: Structure blocks certain wavelength.
Auxetic structure: Negative Poisson's ratio.

Research AV

S Li, H Hassanin, **MM Attallah***, NJE Adkins, K Essa: Acta Materialia 105, 75-83, 2016.

Research Highlights SLM on TiNi Shape Memory Alloys Auxetics

- □ Aim: Using selective laser melting (SLM) to produce NiTi auxetic structure components with superelastic effect.
- □ Key findings:

nterdisciplinary

esearch

- Reduction of cracking and porosity;
- Using heat treatment to improve shape memory performance;
- Achieving auxetic performance during mechanical testing.

S Li, H Hassanin, **MM Attallah***, NJE Adkins, K Essa: Acta Materialia 105, 75-83, 2016.

UNIVERSITY^{OF} BIRMINGHAM

ALM Processing of NiTi Challenges

- □ **Powder quality:** Functionality sensitive to oxygen content.
- Cracking susceptibility: due to residual stresses and the presence of brittle intermetallics.
- □ Control of defects via laser parameters: pores or cracks
- □ Ni-evaporation
- Formation of intermetallics: a need for thermal post processing.

S Li, H Hassanin, **MM Attallah***, NJE Adkins, K Essa: Acta Materialia 105, 75-83, 2016.

Large Scale AM DLD of Large Ti Structures

Research Highlights (DLD) Netshaping using Direct Laser Deposition of Ti-64

- Technology scale up at UoB to produce large (>1m long structures) through optimisation of the process parameters and tool path to minimise porosity and microstructural heterogeneity, and maximise the geometrical consistency.
- The properties of the final component (after HIPping) were similar to a conventionally manufactured component, with significant reduction in material waste and processing time.

C Qiu, GA Ravi, C Dance, A Ranson, S Dilworth, **MM Attallah***: Journal of Alloys & Compounds 629, 351-61, 2015.

Addressing AM Research Challenges Modelling Distortion in DLD of Large Structures

Developing rapid simulations without undermining the computational accuracy.

C Qiu, GA Ravi, C Dance, A Ranson, S Dilworth, **MM Attallah***: Journal of Alloys & Compounds 629, 351-61, 2015.

Maximising Performance Thermal Post-Processing

Influence of HIPping on Porosity Ti-6AI-4V DLD (Blown Powder)

HIPping closed most of the spherical pores within the build microstructure, but struggled with lack of fusion defects.

C Qiu, GA Ravi, C Dance, A Ranson, S Dilworth, **MM Attallah***: Journal of Alloys & Compounds 629, 351-61, 2015.

Research Highlights (DLD) Netshaping using Direct Laser Deposition of Ti-64

- □ The as-fabricated samples show generally high UTS but low EL
- □ The horizontal samples show better EL% than vertical ones.
- HIPping considerably improved the ductility with the reduction of tensile strength.

C Qiu, GA Ravi, C Dance, A Ranson, S Dilworth, **MM Attallah***: Journal of Alloys & Compounds 629, 351-61, 2015.

Tensile Properties Ti-6AI-4V SLM As-Fabricated & HIPed, Build Orientation

- □ HIPping results in coarsening the fine α/α' structure to the $\alpha+\beta$ microstructure, slightly dropping the tensile strength.
- Considerable improvement in the tensile ductility was observed following HIPing, for both orientations (vertical & horizontal).
- □ The vertically-built specimens showed a generally higher tensile elongation (either as-fabricated or HIPed).

C Qiu, NJE Adkins, and **MM Attallah***Materials Science and Engineering A 578, 230-239, 2013.

Fatigue Properties Ti-6AI-4V SLM As-Fabricated & HIPed, Build Orientation

HIPping results in an improvement in the fatigue life, yet still a scatter exists after HIPping, but generally similar to Cast+HIP or wrought Ti-6AI-4V.

HIPping for Crack Closure (Post SLM) CM247LC Ni-Superalloy

-HIPping has been shown to effectively close internal cracks

SLM Fabricated CM247LC Before and After HIPping

LN Carter, **MM Attallah**, RC Reed. Proceedings of Superalloys 2012, Seven Springs, PA, USA, 9-13 September 2012.

HIPping for Crack Closure (Post SLM) CM247LC Ni-Superalloy

□ HIPping cannot close the surface-connected cracks.

LN Carter, **MM Attallah**, RC Reed. Proceedings of Superalloys 2012, Seven Springs, PA, USA, 9-13 September 2012.

Post-Processing of Al-Alloys HIPping of AlSi10Mg Alloys

- Highly susceptible to oxide film defects, resulting in poor wetting/melt penetration, and lack of fusion defects.
- HIPping collapses the oxide film defects, but remnants of the oxide films are visible.
- Post-processing reduces the strength due to the coarsening of the grain structure.

U Tradowsky, J White, RM Ward, N Read, W Reimers, **MM Attallah**: Materials & Design, in press, 2016.

Post-Processing of Al-Alloys HIPping of AlSi10Mg Alloys

- Highly susceptible to oxide film defects, resulting in poor wetting/melt penetration, and lack of fusion defects.
- HIPping collapses the oxide film defects, but remnants of the oxide films are visible.
- Post-processing reduces the strength due to the coarsening of the grain structure.

U Tradowsky, J White, RM Ward, N Read, W Reimers, **MM Attallah**: Materials & Design, in press, 2016.

Post-Processing of Al-Alloys HIPping of AlSi10Mg Alloys

- Highly susceptible to oxide film defects, resulting in poor wetting/melt penetration, and lack of fusion defects.
- HIPping collapses the oxide film defects, but remnants of the oxide films are visible.
- Post-processing reduces the strength due to the coarsening of the grain structure.

U Tradowsky, J White, RM Ward, N Read, W Reimers, **MM Attallah**: Materials & Design, in press, 2016.

UNIVERSITY OF BIRMINGHAM

Research Highlights Alloy Development

Next Generation AM Materials

- The majority of metal AM work has focused on a limited alloy list: AlSi, IN718, Ti-64, & 316L, typically alloys for casting, forging, rolling, but not AM.
- □ Other investigated alloys were prone to defects:
 - Cracking (high γ' Ni-superalloys)
 - Residual stress
 - Gas porosity
- There is a need to develop AM-specific alloys, by tailoring existing alloys or using the flexibility of AM in alloy development.

Alloy Development with Elemental Powders SLM of low CTE AI-Si alloys

Mixing of elemental powders (AI+Si) to create tailored CTE structures (in-situ), to avoid the need for pre-alloyed powders.

Alloy Development using Fine Powder Doping SLM of Ti64-0.2Pd

Aim: Develop modified Ti-based alloy using SLM to improve corrosion resistance.

□ Approach:

- Mix powder Ti-64 powder with Pd using a novel mix technique
- Chemical analysis of as-SLMed samples
- Evaluate corrosion behaviour with and without Pd addition

Alloy Development Laser Combinatorial Synthesis

Combinatorial Synthesis (CS): the production of a large number of alloy combinations in a simple process to identify new alloy combinations with interesting properties.

Wire-based combinatorial synthesis

- Developed in Birmingham
- Laser beam melts elemental wires.
- Composition is adjusted by wire-feeding sp
- High-throughput: alloy buttons in 5 minute

Current activities: design of metallic alloy

- High temperature smart materials
- Thermoelectric materials
- Superconductors
- Corrosion-resistant materials

Research Recentre

S Li, S Liu, NJE Adkins, MM Attallah: Proceedings of the TMS Annual Meeting, USA, February 2014.

High Speed Material Synthesis for M The New Approach

Concluding Remarks Work In-Progress

© AMPLab 2016

Work In-Progress

- □ Refractory metals AM for fusion applications (W, Cr, Mo, V).
- AM for materials for quantum metrology applications (permalloy, Invar36)
- □ Hybrid AM processing for Ni-superalloys.
- AM of PGM-modified superelastic TiNi alloys for medical applications.
- Modelling of powder spreading using discrete element modelling, combined with micro-CT validation.
- □ Meltpool modelling, as a function of laser tool path.
- □ Post-processing of electron beam melting in Ti-64.

Collaborators & Funding Agencies

Technology Strategy Board

Technology Centre

BAE SYSTEMS

Advanced Remanufacturing and Technology Centre

Those who have done the work

- Above: K. Gulia, A. Field, S. Megahed, M. Aristizabal, W Wang, P Jamshidi, T. Hanemann, N. Read, H. Baker, R. Jennings, S. Baker, S. Li, S. McCain, L. Carter, M. Glynn, JP White, H. Hassanin, U. Tradowsky, J. Macdonald, Y. Gaber, C. Qiu, RM Ward
- Not present: Ravi GA, M. Loretto, K. Essa, X Wang, S Liu, L. Parimi, C. Panwisawas, HC Basoalto, JW Brooks, NJA Adkins.

Follow us @amplab_unibham <u>M.M.Attallah@bham.ac.uk</u>

© AMPLab 2016

Challenges Facing Metal AM In Other Words*...

© AMPLab 2016 *Source Unknown