Willkommen Welcome Bienvenue

Studying the phase and microstructure formation in alloys during rapid solidification – towards alloy design for additive manufacturing

Dr. Christian Leinenbach Head Alloy Design for Advanced Processing Technologies (ADAPT) Advanced Materials Processing Laboratory

Outline

- Materials aspects related to AM some basics
- Development of an ODS-TiAl alloy for AM
 - Microstructure formation during rapid solidification
 - Microstructure of AM processed ODS-TiAl
- Development of bronze/diamond composites for AM
 - SLM processing of bronze/diamond composites
 - Rapid solidification of Cu-Sn-Ti alloys
- Summary and outlook

Materials aspects related to AM – some basics

- Development of an ODS-TiAl alloy for AM
 - Microstructure formation during rapid solidification
 - Microstructure of AM processed ODS-TiAl
- Development of bronze/diamond composites for AM
 - SLM processing of bronze/diamond composites
 - Rapid solidification of Cu-Sn-Ti alloys
- Summary and outlook

Materials of interest for AM (in CH)

 In Switzerland, there is a specific need for AM of the following materials

- Advanced high-temperature alloys (γ'-hardening Ni-based alloys, Cobased alloys, TiAl) for power generation and aerospace applications
- Tool steels, HSS, metal-superabrasives composites for advanced shape forming tools (grinding, cutting, milling etc.)
- Precious metal alloys (Au-, Pd-, Pt-based) for jewelry and watches
- Useful information on the processability of those materials is very limited or not existing!

What are the problems with AM processing?

 Empa

- hot cracking
- strong segregation of specific elements
- thermal cracking of brittle phases due to high stresses
- *ex situ* studies on rapid solidified alloys
 - characterization of microstructure, phase analysis and segregation tendency
 - influence of alloying elements on behavior under AM conditions
 - screening of potential / already available / new alloys
- *in situ* studies to follow solidification and transformation

alloy chemistry dependent

A look into the AM process conditions

- A small material volume is rapidly heated and cooled with large thermal gradients ($\Delta T \approx 10^3$ 10^4 K/s)
- → The molten material solidifies very rapidly!

Thermal history during AM

- Charactistics of AM processing
 - Fast heating and cooling ($\Delta T \approx 10^4$ K/s)
 - → suppressed phase transformations; supersaturated phases
 - \rightarrow segregation
 - → thermal residual stresses
 - Unidirectional heat flow into building plate/substrate
 - → textured grains; anisotropic properties
 - Every layer undergoes repeated heating and cooling cycles; temperatures can exceed T_{liq} or T_{α↔β}
 - → Multiple phase transformations, complex microstructures with unwanted properties

thermal profile of a single layer AM processed Ti-6Al-4V

/W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917/

Solid-liquid interface: slow vs. rapid cooling

 $X_{sol} = k^m \cdot X_{liq}$

Non-equilibrium phase transformations

- equilibrium phase diagram
 - common tangent construction \rightarrow energy minimization by formation of two phases
 - equilibrium composition of the formed phases at T₁
- diffusion-less phase transformations
 - ideally no diffusion → all phases have the same composition
 - T gives the composition at which $G_A = G_B$
 - a phase B transforms to A if G_A<G_B

Alloy development for AM – Empa approach

- Ultimate test: AM using an optimized alloy
 - AM equipment
 - new alloy according to specifications
 - suitable powder shape
- Intermediate test: Alloy behavior during rapid melting and cooling using the AM equipment
 - equipment for rapid heating and cooling (=AM equipment)
 - new alloy in solid form
 - no powder needed

«processability»=f(alloy)

«processability»=f(process, alloy)

- First level test: Alloy behavior at high cooling rates
 - rapid cooling equipment (≠ AM equipment)
 - new alloy
 - no powder needed

processability=f(process, powder, alloy)

Materials aspects related to AM – some basics

- Development of an ODS-TiAl alloy for AM
 - Microstructure formation during rapid solidification
 - Microstructure of AM processed ODS-TiAl
- Development of bronze/diamond composites for AM
 - SLM processing of bronze/diamond composites
 - Rapid solidification of Cu-Sn-Ti alloys
- Summary and outlook

Alloy development for AM – TiAl

- Ti-Al alloys of interest for high temperature structural components
 - Iow density (~3.9-4.2 g/cm³)
 - high Young's modulus (~140 GPa), high strength, creep resistant
 - higher oxidation resistance than Ti alloys
 - higher service T than Ti alloys
- Fully intermetallic
 - low elongation to fracture, brittle at room temperature
 - sensitive to contamination, properties strongly dependent on phase morphology
 - Extremely difficult to process by AM

The system Ti-Al

AM of a Ti-45Al-3Nb alloy

Sintering (SPS)

SLM

LMD

Kenel, C. et al., 2016, in preparation

Rapid solidification – basic offline tests

- heating and rapid solidification of small samples using W-electrode arc melting or laser beam melting
- size dependent cooling rates
 - spherical samples, the smaller the faster
 - cooling rate ~ r⁻²
- function correlating radius and cooling rate
 - single «material» parameter to describe the complete curve
- simulation verification by high speed camera measurement
 - comparable solidus propagation in experiment and simulation

Comparison measurement - simulation

Influence of cooling rate on microstructure formation

Kenel C, Leinenbach C. J Alloys Compd 2015;637:242.

Influence of cooling rate on microstructure formation

- composition cooling rate microstructure maps
 - properties relevant to processing (here: formation of intermetallic phases)
 - data for alloy selection
 - similar to processing window determination experiments → indications for suitable processing parameters
- predictability based on equilibrium phase diagram information: limited

Empa

Aaterials Science and Technology

Construction of phase selection hierarchy maps

- T₀ temperatures for different phase transformations and solidification
 - calculated using CALPHAD
 - based on published thermodynamic assessment for Ti-AI [VT Witusiewicz et al. J Alloys Compd 2008;465:64]
- map constituents

Temperature [K]

- T₀ temperature curves for specific phase transformations
- fields with a hierarchy according to the Gibb's free energy
- «phase diagram without diffusion»

/C. Kenel, CL. J Alloys Compd 2015;637:242/

Empa

ials Science and Technolog

Construction of phase selection hierarchy maps

- T₀ temperatures for different phase transformations and solidification
 - calculated using CALPHAD
 - based on published thermodynamic assessment for Ti-AI [VT Witusiewicz et al. J Alloys Compd 2008;465:64]
- map constituents
 - T₀ temperature curves for specific phase transformations
 - fields with a hierarchy according to the Gibb's free energy
- «phase diagram without diffusion»

/C. Kenel, CL. J Alloys Compd 2015;637:242/

Validation - In situ microXRD tests

- Laser heating setup in microXAS beamline at Paul-Scherrer-Institut
- Rapid melting and solidification in spherical alloy specimens; cooling rate determined by sphere radius (C. Kenel, CL. J Alloys Compd 2015;637:242)
- Time resolved characterization of phase transformations during rapid solidification using microXRD (transmission) and high speed imaging
- Study of solidification sequence in Ti-48Al at cooling rate of 1.25·10³ K·s⁻¹

In situ microXRD tests

t_{tot} = 1.5 s

- Laser heating until stable melt is reached for >1s and shut-off
- Azimuthal integration for time evolution series
- 1 Experiment = 2000 2D spectra (new measurements: 10000 2D-spectra!)

/C. Kenel, D. Grolimund, J.L. Fife, V.A. Samson, S. Van Petegem, H. Van Swygenhoven, CL, Scripta Mater 2016:114;117/

In situ microXRD on binary Ti-48Al

In situ microXRD on binary Ti-48Al

High T (~1500°C): metallic liquid

In situ microXRD on binary Ti-48Al

In situ microXRD tests

- Analysis of peak evolution and non-crystalline fraction shows the coexistence of the liquid phase and the α-phase upon solidification
- Pixel intensities on CCD chip can be correlated with actual surface temperature $I_{CCD} = \frac{a \cdot c_{1L}}{\exp(\frac{c_2}{h \cdot T}) - 1}$

Based on the presented results, the non-equilibrium solidification and
transformation of Ti-48Al follows:
$$L \rightarrow L + \alpha \rightarrow \alpha + \gamma_{seg} \rightarrow \alpha + \gamma + \gamma_{seg} \rightarrow \alpha_2 + \gamma$$

 $A + \gamma + \gamma_{seg} \rightarrow \alpha_2 + \gamma$
 $A + \gamma + \gamma_{seg} \rightarrow \alpha_2 + \gamma$

Phase evolution under AM conditions

Phase transformation sequence

- Full equilibrium: $L \rightarrow L + \beta \rightarrow L + \beta + \alpha \rightarrow L + \alpha \rightarrow \alpha \rightarrow \alpha + \gamma \rightarrow \gamma \rightarrow \gamma + \alpha_2$
- AM conditions: $L \rightarrow L + \alpha \rightarrow \alpha \rightarrow \alpha + \gamma \rightarrow \gamma + \alpha_2$
 - Preference of α over β under non-equilibrium conditions
 - Early formation of γ
 - Suppression of full $\alpha \rightarrow \gamma$ transformation and direct ordering $\alpha \rightarrow \alpha_2$

Influence of Nb on microstructure

- Calculations in good agreement with experimental data
- T₀ concept allows to predict
 - changed transformation behavior
 - non-equilibrium effects
 - changed transformation tendencies
- if the thermodynamic assessments are available and are of sufficient quality

[/]C. Kenel, CL, Intermetallics 2016;69:82/

AM of TiAl with more complex geometries

SLM 3D test structures (in collaboration with Inspire)

LMD test structure Ti-Al alloy (with TWI Ltd.)

CT of a LMD test specimen

3mm

- Materials aspects related to AM some basics
- Development of an ODS-TiAl alloy for AM
 - Microstructure formation during rapid solidification
 - Microstructure of AM processed ODS-TiAl
- Development of bronze/diamond composites for AM
 - SLM processing of bronze/diamond composites
 - Rapid solidification of Cu-Sn-Ti alloys
- Summary and outlook

New materials by AM Metal-diamond composites

- Metal-diamond composites interesting for high-performance cutting or grinding tools
- Conventional production: Galvanic Ni-bonding of diamond particles
 - Only single layer diamond tools possible, typically with simple geometry
- AM offers possibility to produce complexely shape geometries (e.g. internal cooling chanels
- Problem: Graphitization tendency of diamond particles at elevated temperatures
 - Depending on atmosphere (Inert atmosphere / vacuum $\approx 1'500^\circ$, Air $\approx 1'000^\circ$ C)

Metal-diamond composites

- Matrix material
 - Cu-14Sn-10Ti alloy
 - High thermal conductivity (> \approx 55 W/mK)
 - T_{liquidus} = 925°C
 - Powder with
 - D₁₀ = 7.6µm
 - $D_{50} = 20 \mu m$
 - D₉₀ = 38µm
- Diamond particles
 - 50 vol% Ni-coated to protect the diamond particles from graphitization (additional heat sink)
 - Mean particle Ø
 33.9 ± 6.4µm

Metal-diamond composites

SLM processing of a of Cu-Sn-Ti alloy & diamond particles

Stable specimens with good surface quality can be produced

Diabraze with 10 vol% Ni-coated diamond, EL = 50.5 J/mm³

Diabraze with 20 vol% Ni-coated diamond, $EL = 41.2 \text{ J/}_{mm}3$

/A.B. Spierings, CL, C. Kenel. K. Wegener, Rapid Prot J, 2016; 21(2):130-136/

Metal-diamond composites

Integrity of diamonds after SLM

- Intact diamonds, embedded in the matrix
- Diamonds are surrounded by very small TiC particles
- → Diamond particles partly dissolves into the matrix during the SLM-process, forming TiC particles

/A.B. Spierings, CL, C. Kenel. K. Wegener, Rapid Prot J, 2016; 21(2):130-136/

Cooling rate dependent microstructure in Cu-Sn-Ti alloys

- Main phase constitutes (fcc (Cu) and (Cu,Sn)₃Ti₅) don't change with modification of cooling rate.
- Increasing cooling rate:
 - Grain sizes significantly decrease
 - Morphorlogy: eutectic lamelar structures
 - Suppress of densritic primary phase
 - Small amount of Ti enriched phases

Composition dependent microstructure in Cu-Sn-Ti alloys

cooling rate ~600 K/s

- Slightly changing the Ti content, the amount of large IMC is reduced.
- Different Sn/Ti ratios:
 - The phase constitutes change, i.e. new δ phase
 - The morphology of (Cu) phase varies from dendrite to non-dendritic shape.

- Materials aspects related to AM some basics
- Development of an ODS-TiAl alloy for AM
 - Microstructure formation during rapid solidification
 - Microstructure of AM processed ODS-TiAl
- Development of bronze/diamond composites for AM
 - SLM processing of bronze/diamond composites
 - Rapid solidification of Cu-Sn-Ti alloys
- Summary and outlook

Summary

- Metal additive manufacturing offers novel and hitherto unknown possibilities in terms of geometry and functionality of components
- To exploit those possibilities, the understandig and optimization of the currently existing alloys or the development of novel alloys is necessary
- It is crucial to know the phase relations in the alloys of interest as well as the phase transformation behaviour under the rapid solidification conditions during laser AM
- ...we are only at the beginning. Real additive MANUFACTURING (not prototyping) requires a better understanding of the correlation between design, materials, manufacturing process and component properties

Acknowledgement

...the people at Empa

- Christoph Kenel
- Georgia Dasargyri
- Toni Ivas
- Xiaoshuan Li
- Patrik Hoffmann

...the project partners

- Thomas Bauer, inspire icams
- Adriaan Spierings, inspire icams
- Karl Dawson, ULIV
- Keith Arnold, ULIV
- Gordon Tatlock, ULIV
- Alberto Colella, MBN
- Carl Hauser, TWI
- Daniel Grolimund, PSI
- Valerie Ann Samson, PSI
- Julie L. Fife, PSI
- Steven van Petegem, PSI
- Helena van Swygenhofen, PSI

Microstructure of AM ODS-TiAl

- a) as processed state \rightarrow meta-stable microstructure
- b) after thermal annealing at 1123 K for 12 h (inset: scale bar = 4 mm) \rightarrow ultra fine lamellar two-phase ($\alpha 2/\gamma$) microstructure.

- a) STEM bright-field, distribution of fine ODS particles,
- b) HRTEM micrograph of an ODS particle pinning a grain boundary (GB) in the intermetallic matrix
- c) TEM micrograph of ODS particles interacting with dislocations.

Influence of AM process on oxide particles

- AM processing leads to a certain degree of particle coarsening due to the high temperature and presence of a liquid phase
- Rapid growth can occur in the liquid state by incorporation of Ti and/or Al into oxides
- Reducing the energy input in the material during processing clearly reduces the preserved oxide particle size.

Properties of ODS-TiAl

ODS variant has

- Higher yield point
- Higher ultimate strength
- Lower ductility

Case 2: Ti-6Al-4V

Full length article

Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting

S.L. Lu ^{a, c, e}, M. Qian ^{b, c, *}, H.P. Tang ^{c, **}, M. Yan ^d, J. Wang ^c, D.H. StJohn ^e

^a School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China

^b Centre for Additive Manufacturing, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia ^c State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China

^d Department of Materials Science and Engineering, South University of Science and Technology of China (SUSTC), Shenzhen 518055, China

* Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Qld 4072, Australia

- EBM processed Ti-6Al-4V
- Observation of (unusual) massive hcp-α grains along former bcc-β grains in α' (martensite) matrix
- Rack et al. showed that the massive transformation occurred in mill-annealed Ti-6Al-4V when cooled at cooling rates (defined at 900 C) between 20 K/s and 410 K/s.

Empa Materials Science and Technology

Case 2: Ti-6Al-4V

- Calculation of the Gibbs free energies of the hcp-α, bcc-β and liquidus phase based on the TTTi3 database
- The $\beta \rightarrow \alpha + \beta$ transus temperature is known to be 970°C
- The M_s of Ti-6Al-4V is known to be ≈800°C
- The T₀-Temperature between hcp-α and bcc-β is calculated to 893°C
- the cooling rates during EBM are high enough that massive α grains can form in a diffusionless transformation between 893°C and 800°C
- the massive α grains are not stable and decompose into α+β lamellae as a result of the repeated re-heating during AM

