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Motivation Aim

» Fe-Mn-Al-C steels exhibit outstanding
strength and ductility [1].

» Ab-Initio study of k-carbides as precipitates

INn austenitic Fe matrix.

Results: kx-carbides as Precipitates

> Addition of Al promotes precipitation of (d
nanosized k—carbides which control
mechanical properties in various ways, e.g.
¢+ Strain hardening in alloys [2].

*» Improvement in tensile ductility by
specific heat treatment to form y/x
lamellar microstructure via discontinuous
precipitation [3].

» Dispersion of fine precipitates of carbides in
the high-strength steels may increase the
resistance of these steels to hydrogen
embrittlement [4].

Columnar k-carbide in AFMD Fe matrix.

Dark-field TEM image of the distribution of k-

carbides in a long annealed Fe-Mn-Al-C sample [2]. Observations:

» AFMD order of Fe matrix influences the magnetic order of the columnar k-carbide.

Structure and Composition

» Crystal structure of k-carbide 1s E2;.

» Al atoms sit at the corners of the cube,

~e atoms occupy the face center

positions and C is In the octahedral

position.

» Mn can replace Fe from its face
centered position, eventually giving
Mn,;AIC.

» Nominal composition is (Fe,Mn),AIC.

» APT measurements show deviations
from stoichiometry.
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Results: Bulk k-carbide

Formation energy: E; = E (Fe; Mn AIC) - (3 - X) g4 - Xttyn - Hay - Hc

Results: Coherent Interface energy
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Formation energies vs volume for various magnetic phases of k-carbide.
Here, PM phase is constructed with the aid of special quasi random structure

Yeor = -1.0 J/m? (AB kind of interface) Layered thickness of k-carbide

Interface energy vs thickness for 1x1x8 supercell of Fe and

(SQS ) scheme. vo = -5.4 J/m2 (B kind of interface) k-carbide at constraint lattice constant of Fe.
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Formation energy vs chemical potential for coherent precipitates.

Observations:

» Ferromagnetic phase (FM) Is most stable. 3.75 (of ) 0.75
> Fe;AlIC 1s more abundant than Mn containing k-carbides, as coherent precipitate. 3.60 (Intermediate) 0.04
» Lattice mismatch grows with increase in Mn concentration. 3.45 (of Fe) 947

Lattice constant vs Mn concentration.
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L_attice constant (,&) Vacancy formation energy (eV)

Observations:

» Increase In strain energy (by growing misfit) is compensated
by lowering of vacancy formation energy.

> Explains deviation from stoichiometry as observed in experiments. Vacancy at C-site in 2x2x2 SC

Outlook

“* To explore the role played by k-carbide precipitates in influencing the sensitivity of the host
matrix to hydrogen embrittlement e.g. interplay of vacancies and hydrogen.
“ Deeper understanding of the kinetics involved in the k-carbide formation.
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