Research Topic

Defects & Microstructure

Defects & Microstructure

<div style="text-align: justify;">The grain structure of a polycrystalline material is a primary determinant of its mechanical properties. Careful control of the evolution of this grain structure during the process of recrystallization is required if alloys are to be optimised for their intended engineering applications. If we are to develop accurate meso-scale models of microstrucutural evolution, we will need a good theoretical understanding of the mobility and migration mechanisms of grain boundaries.</div>

Grain Boundary dynamics

The grain structure of a polycrystalline material is a primary determinant of its mechanical properties. Careful control of the evolution of this grain structure during the process of recrystallization is required if alloys are to be optimised for their intended engineering applications. If we are to develop accurate meso-scale models of microstrucutural evolution, we will need a good theoretical understanding of the mobility and migration mechanisms of grain boundaries.
[more]
The energetics as well as atomistic mechanisms underlying the segregation of impurities at Si grain boundaries (GB) and GB junctions have been investigated.

Asymmetric Line Segregation at Faceted Si Grain Boundaries

The energetics as well as atomistic mechanisms underlying the segregation of impurities at Si grain boundaries (GB) and GB junctions have been investigated. [more]
High-Mn-steels are excellent candidates for the next generation of high-strength materials. In such steels the prevailing plasticity mechanism is determined by stacking fault energy. In this study, we aim to develop a generalized first-principles framework that allows temperature- and composition-dependent atomic-scale description of the stacking fault properties, necessary to explore chemical trends, to deliver parameters for mesoscale models, and to identify new routes to optimize high-Mn-steels.

Stacking faults in high-Mn steels

High-Mn-steels are excellent candidates for the next generation of high-strength materials. In such steels the prevailing plasticity mechanism is determined by stacking fault energy. In this study, we aim to develop a generalized first-principles framework that allows temperature- and composition-dependent atomic-scale description of the stacking fault properties, necessary to explore chemical trends, to deliver parameters for mesoscale models, and to identify new routes to optimize high-Mn-steels. [more]
 
loading content
Go to Editor View