High-Mn-steels are excellent candidates for the next generation of high-strength materials. In such steels the prevailing plasticity mechanism is determined by stacking fault energy. In this study, we aim to develop a generalized first-principles framework that allows temperature- and composition-dependent atomic-scale description of the stacking fault properties, necessary to explore chemical trends, to deliver parameters for mesoscale models, and to identify new routes to optimize high-Mn-steels.
[more]